Hydroxyurea (hydroxycarbamide, HU) arrests cells in the S-phase by inhibiting ribonucleotide reductase and DNA synthesis, significantly contributing to the release of nitric oxide (NO). We investigated the involvement of inducible NO synthase (NOS2) in the cytostatic effect of HU using in vitro shRNA-induced knockdown of the NOS2 transcript (NOS2) or a specific NOS2 inhibitor (1400W) in human erythroleukemic HEL92.1.
View Article and Find Full Text PDFCancer-promoting proinflammatory microenvironment influences colorectal cancer (CRC) development. We examined the biomarkers of inflammation, intestinal differentiation, and DNA activity correlated with the clinical parameters to observe progression and prognosis in the adenocarcinoma subtype of CRC. Their immunohistology, immunoblotting, and RT-PCR analyses were performed in the adenocarcinoma and neighboring healthy tissues of 64 patients with CRC after routine colorectal surgery.
View Article and Find Full Text PDFChronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control.
View Article and Find Full Text PDFThe calcium-binding proteins S100A4, S100A8, and S100A9 are upregulated in chronic lymphocytic leukemia (CLL), while the S100A9 promotes NF-κB activity during disease progression. The S100-protein family has been involved in several malignancies as mediators of inflammation and proliferation. The hypothesis of our study is that S100A proteins are mediators in signaling pathways associated with inflammation-induced proliferation, such as NF-κB, PI3K/AKT, and JAK/STAT.
View Article and Find Full Text PDFAlthough bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells.
View Article and Find Full Text PDFChronic inflammation is characterized by the production of reactive oxygen species (ROS), reactive nitrogen species, and inflammatory cytokines in myeloproliferative neoplasms (MPNs). In addition to these parameters, the aim of this study was to analyze the influence of ROS on the proliferation-related AKT/mTOR signaling pathway and the relationship with inflammatory factors in chronic myelogenous leukemia (CML). The activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase is reduced in erythrocytes while levels of the oxidative stress markers malondialdehyde and protein carbonyl are elevated in the plasma of patients with CML.
View Article and Find Full Text PDFThe highest number of acute Babesia canis cases in dogs is recorded over the February-May (Feb-May) period, which also represents the optimal climate conditions for tick activity in Belgrade, Serbia. A possibility that the acute phase response is more intense in dogs developing the disease in the Feb-May period compared with the response in other time periods of the year was tested. A total of 63 client-owned dogs with acute B.
View Article and Find Full Text PDFBackground: Chronic inflammation has been recognized in neoplastic disorders, including myeloproliferative neoplasm (MPN), as an important regulator of angiogenesis.
Aims: We investigated the influence of vascular endothelial growth factor (VEGF) and pro-inflammatory interleukin-6 (IL-6) on the expression of angiogenic factors, as well as inflammation-related signaling in mononuclear cells (MNC) of patients with MPN and V617F positive human erythroleukemic (HEL) cells.
Results: We found that IL-6 did not change the expression of angiogenic factors in the MNC of patients with MPN and HEL cells.
This study has been performed to determine the mechanism of activation of the myeloid related S100A proteins by inflammatory cytokines in myeloproliferative neoplasm (MPN). Besides microarray analysis of MPN-derived CD34 cells, we analysed the pro-inflammatory IL6 and anti-inflammatory IL10 dependence of NF-κB, PI3K-AKT, and JAK-STAT signalling during induction of S100A proteins in mononuclear cells of MPN, by immunoblotting and flow cytometry. We observed the reduced gene expression linked to NF-κB and inflammation signalling in MPN-derived CD34 cells.
View Article and Find Full Text PDFHydroxyurea (HU) is a nonalkylating antineoplastic agent used in the treatment of hematological malignancies. HU is a DNA replication stress inducer, and as such, it may induce a premature senescence-like cell phenotype; however, its repercussion on bystander cell proliferation has not been revealed so far. Our results indicate that HU strongly inhibited peripheral blood mesenchymal stromal cells (PBMSC) proliferation by cell cycle arrest in S phase, and that, consequently, PBMSC acquire senescence-related phenotypical changes.
View Article and Find Full Text PDFIn accordance with increased proliferation in myeloproliferative neoplasm (MPN), the goal is to evaluate the immunoexpression of: β-catenin, PPAR-γ and Ki67 protein, to compare them with bone marrow ultrastructural characteristics in patients with MPN. Immunoexpression and electron microscopy of bone marrow was analyzed in 30 Ph-negative MPN patients, including per 10 patients with polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The quantity of β-catenin immunoreactive cells was significantly higher in PV then in ET (p < 0.
View Article and Find Full Text PDFMyeloproliferative neoplasms (MPNs) are developing resistance to therapy by JAK1/2 inhibitor ruxolitinib. To explore the mechanism of ruxolitinib's limited effect, we examined the JAK1/2 mediated induction of proliferation related ERK1/2 and AKT signaling by proinflammatory interleukin-6 (IL-6) in MPN granulocytes and JAK2V617F mutated human erythroleukemia (HEL) cells. We found that JAK1/2 or JAK2 inhibition prevented the IL-6 activation of STAT3 and AKT pathways in polycythemia vera and HEL cells.
View Article and Find Full Text PDFPurpose: A common feature of malignancies is increased reactive oxygen species (ROS) and reactive nitrogen species (RNS). We analyzed the influence of oxidative and nitrosative stress on the activation of AKT/mTOR signaling pathway in myeloproliferative neoplasms (MPN).
Methods: Oxidative stress-induced gene expression in circulatory CD34+ cells of MPN patients was studied by microarray analysis.
Purpose: Previously, the family of S100A proteins has been found to be associated with inflammation and myelopoiesis and to be able to induce or support myeloproliferation during chronic inflammation. Here, we studied the inflammatory myeloid-related proteins S100A4, S100A8, S100A9 and S100A12 in myeloproliferative neoplasms (MPNs) in order to assess the involvement of chronic inflammation in the pathogenesis of MPN.
Methods: We analyzed the S100A4, S100A8, S100A9 and S100A12 mRNA and protein levels in the bone marrow and circulation of 140 patients with MPN and 15 healthy controls using Western blotting, microarray-based mRNA expression profiling and ELISA assays, respectively.
Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls.
View Article and Find Full Text PDFBackground/aim: The purpose of this study was to investigate proliferation and differentiation markers in colorectal adenocarcinoma and their correlation with clinicopathological factors.
Materials And Methods: Samples were collected from 38 patients with colorectal adenocarcinoma and 10 healthy controls. E-cadherin, carcinoembryonic antigen (mCEA), cyclin B1, vascular endothelial growth factor (VEGF), and erythropoietin (EPO) receptor (EPOR) were examined by immunohistochemistry; VEGF and EPO were examined by real-time PCR.
It has been shown that angiogenesis and inflammation play an important role in development of most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with JAK2V617F mutation allele burden and effects of therapy. HIF-1α and VEGF gene expression were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients.
View Article and Find Full Text PDFThe recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs) showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34(+) cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV) and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF) patients.
View Article and Find Full Text PDFThe gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34+ cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34+ cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects.
View Article and Find Full Text PDFThe aim of our study was to investigate the appearance, density and distribution of ghrelin cells and GHS-R1a and GHS-R1b in the human stomach and duodenum during prenatal and early postnatal development. We examined chromogranin-A and ghrelin cells in duodenum, and GHS-R1a and GHS-R1b expression in stomach and duodenum by immunohistochemistry in embryos, fetuses, and infants. Chromogranin-A and ghrelin cells were identified in the duodenum at weeks 10 and 11 of gestation.
View Article and Find Full Text PDFPurpose: The purpose of this study was to examine the gene expression profile of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood (mPB)-derived progenitors, used in transplantation.
Methods: We correlated gene expression patterns of highly enriched steady-state peripheral blood (PB)- and mPB-derived CD71+ cells by microarray and ingenuity pathway analyses, to identify the transcriptional program during in vitro erythroid differentiation.
Results: The gene expression was more than doubled in mPB-derived (4180 genes) compared to PB-derived erythroid progenitors (1667 genes) while PB-and mPB-derived erythroid progenitors shared 1534 common genes.