Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches.
View Article and Find Full Text PDFPurpose: Myopia (nearsightedness) is a condition in which a refractive error (RE) affects vision. Although common variants explain part of the genetic predisposition (18%), most of the estimated 70% heritability is missing. Here, we investigate the contribution of rare genetic variation because this might explain more of the missing heritability in the more severe forms of myopia.
View Article and Find Full Text PDFRefractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2021
Purpose: The International Myopia Institute (IMI) Yearly Digest highlights new research considered to be of importance since the publication of the first series of IMI white papers.
Methods: A literature search was conducted for articles on myopia between 2019 and mid-2020 to inform definitions and classifications, experimental models, genetics, interventions, clinical trials, and clinical management. Conference abstracts from key meetings in the same period were also considered.
Purpose: To determine the risk between degree of myopia and myopic macular degeneration (MMD), retinal detachment (RD), cataract, open angle glaucoma (OAG), and blindness.
Methods: A systematic review and meta-analyses of studies published before June 2019 on myopia complications. Odds ratios (OR) per complication and spherical equivalent (SER) degree (low myopia SER < -0.
Refractive errors, in particular myopia, are a leading cause of morbidity and disability worldwide. Genetic investigation can improve understanding of the molecular mechanisms that underlie abnormal eye development and impaired vision. We conducted a meta-analysis of genome-wide association studies (GWAS) that involved 542,934 European participants and identified 336 novel genetic loci associated with refractive error.
View Article and Find Full Text PDFPurpose: To evaluate the roles of known myopia-associated genetic variants for development of myopic macular degeneration (MMD) in individuals with high myopia (HM), using case-control studies from the Consortium of Refractive Error and Myopia (CREAM).
Methods: A candidate gene approach tested 50 myopia-associated loci for association with HM and MMD, using meta-analyses of case-control studies comprising subjects of European and Asian ancestry aged 30 to 80 years from 10 studies. Fifty loci with the strongest associations with myopia were chosen from a previous published GWAS study.
Myopia is a refractive error of the eye caused by a complex interplay between nature and nurture. The aim of this study was to investigate whether environmental risk factors can influence the genetic effect in children developing myopia. A total of 3422 children participating in the birth-cohort study Generation R underwent an extensive eye examination at 9 years with measurements of refractive error and axial length corneal radius ratio (AL/CR).
View Article and Find Full Text PDFThe knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders.
View Article and Find Full Text PDFPurpose: To identify genes and genetic markers associated with corneal astigmatism.
Methods: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.
Importance: Myopia (ie, nearsightedness) is becoming the most common eye disorder to cause blindness in younger persons in many parts of the world. Visual impairment due to myopia is associated with structural changes of the retina and the globe because of elongation of the eye axis. How axial length-a sum of the anterior chamber depth, lens thickness, and vitreous chamber depth-and myopia relate to the development of visual impairment over time is unknown.
View Article and Find Full Text PDFMyopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry.
View Article and Find Full Text PDF