Alfalfa ( L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility.
View Article and Find Full Text PDFMolecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied.
View Article and Find Full Text PDFPlant-specific WUSCHEL-related homeobox (WOX) family transcription factors play critical roles in maintaining meristems and lateral organ development. The WUS clade member STF/LAM1 physically interacts with the intermediate clade member WOX9. This interaction contributes to their antagonistical functions on leaf blade outgrowth by competing for the same cis-elements in the promoter of their common target in M.
View Article and Find Full Text PDFThe milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula.
View Article and Find Full Text PDFPlant lateral organs are often elaborated through repetitive formation of developmental units, which progress robustly in predetermined patterns along their axes. Leaflets in compound leaves provide an example of such units that are generated sequentially along the longitudinal axis, in species-specific patterns. In this context, we explored the molecular mechanisms underlying an acropetal mode of leaflet initiation in chickpea pinnate compound leaf patterning.
View Article and Find Full Text PDFPlant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula.
View Article and Find Full Text PDFAnthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b.
View Article and Find Full Text PDFAlfalfa (Medicago sativa L.) is a perennial flowering plant in the legume family that is widely cultivated as a forage crop for its high yield, forage quality and related agricultural and economic benefits. Alfalfa is a photoperiod sensitive long-day (LD) plant that can accomplish its vegetative and reproductive phases in a short period of time.
View Article and Find Full Text PDFRoot nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in .
View Article and Find Full Text PDFThe plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris.
View Article and Find Full Text PDFNyctinastic leaf movement of Fabaceae is driven by the tiny motor organ pulvinus located at the base of the leaf or leaflet. Despite the increased understanding of the essential role of ()/ () orthologs in determining pulvinus identity in legumes, key regulatory components and molecular mechanisms underlying this movement remain largely unclear. Here, we used WT pulvinus and the equivalent tissue in the mutant to carry out transcriptome and proteome experiments.
View Article and Find Full Text PDFTea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants.
View Article and Find Full Text PDFIn legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in . We characterized six terpenoid synthesis genes from by overexpressing , and in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
August 2021
Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development.
View Article and Find Full Text PDFThe growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development.
View Article and Find Full Text PDFThe size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size.
View Article and Find Full Text PDFIn most legumes, two typical features found in leaves are diverse compound forms and the pulvinus-driven nyctinastic movement. Many genes have been identified for leaf-shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward-genetic screening and whole-genome resequencing, we found that two allelic mutants of Medicago truncatula with unclosed leaflets at night were impaired in MtDWARF4A (MtDWF4A), a gene encoding a cytochrome P450 protein orthologous to Arabidopsis DWARF4.
View Article and Find Full Text PDFPlant-specific WOX family transcription factors play important roles ranging from embryogenesis to lateral organ development. The WOX1 transcription factors, which belong to the modern clade of the WOX family, are known to regulate outgrowth of the leaf blade specifically in the mediolateral axis; however, the role of WOX1 in compound leaf development remains unknown. Phylogenetic analysis of the whole WOX family in tomato (Solanum lycopersicum) indicates that there are 10 members that represent the modern, intermediate, and ancient clades.
View Article and Find Full Text PDFA 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives.
View Article and Find Full Text PDFWOX family transcription factors regulate multiple developmental programs. The intermediate clade transcriptional activator WOX9 functions together with the modern clade transcriptional repressor WOX genes in embryogenesis and meristems maintenance, but the mechanism of this interaction is unclear. STF and LAM1 are WOX1 orthologs required for leaf blade outgrowth in Medicago truncatula and Nicotiana sylvestris, respectively.
View Article and Find Full Text PDFPvArf regulate proline biosynthesis by physically interacting with PvP5CS1 to improve salt tolerance in switchgrass. The genetic factors that contribute to stress resiliency are yet to be determined. Here, we identified three ADP-ribosylation factors, PvArf1, PvArf-B1C, and PvArf-related, which contribute to salinity tolerance in transgenic switchgrass (Panicum virgatum L.
View Article and Find Full Text PDFMale sterility is an important tool for plant breeding and hybrid seed production. Male-sterile mutants are largely due to an abnormal development of either the sporophytic or gametophytic anther tissues. Tapetum, a key sporophytic tissue, provides nutrients for pollen development, and its delayed degeneration induces pollen abortion.
View Article and Find Full Text PDFCompound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that the trifoliate leaf pattern of the model leguminous plant Medicago truncatula is controlled by the BEL1-like homeodomain protein PINNATE-LIKE PENTAFOLIATA1 (PINNA1).
View Article and Find Full Text PDFDELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth.
View Article and Find Full Text PDFIn species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown. Using genome resequencing approaches, we identified insertion sites at four alleles of the LATERAL LEAFLET SUPPRESSION1 (LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 in Medicago truncatula.
View Article and Find Full Text PDF