Publications by authors named "Milliat F"

We recently demonstrated that a heterogeneous tumor irradiation strategy, combining high-dose and low-dose radiotherapy (RT) within the same tumor volume, can synergize with immunotherapy in mice. Our findings indicate that heterogeneous RT doses may promote the spatial diversification of the antitumor immune response. Spatial fractionation of the RT dose has the potential to enhance the therapeutic index of RT/IO combinations, particularly in scenarios where irradiating the entire tumor volume is unfeasible or excessively harmful to the patient.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different doses of radiotherapy (RT) affect the tumor immune environment and explores a strategy that combines low dose RT (LDRT) with high dose RT (HDRT) to enhance anti-tumor responses.
  • Researchers conducted experiments on colorectal and breast cancer models in mice, finding that a technique called partial irradiation (PI) improved tumor control when paired with an immune treatment (anti-PD1).
  • Results showed that PI reshaped immune cells in the tumor, increasing their ability to fight cancer, while also suggesting that adding a certain drug (CXCR2 antagonist) alongside RT and immunotherapy can enhance tumor control and survival rates.
View Article and Find Full Text PDF

Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection.

View Article and Find Full Text PDF

Purpose: Radiation-induced pneumopathy is the main dose-limiting factor in cases of chest radiation therapy. Macrophage infiltration is frequently observed in irradiated lung tissues and may participate in lung damage development. Radiation-induced lung fibrosis can be reproduced in rodent models using whole thorax irradiation but suffers from limits concerning the role played by unexposed lung volumes in damage development.

View Article and Find Full Text PDF

Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response.

View Article and Find Full Text PDF

Background: Stromal vascular fraction (SVF) treatment promoted the regeneration of the intestinal epithelium, limiting lethality in a mouse model of radiation-induced gastrointestinal syndrome (GIS). The SVF has a heterogeneous cell composition; the effects between SVF and the host intestinal immunity are still unknown. The specific role of the different cells contained in the SVF needs to be clarified.

View Article and Find Full Text PDF

Radiation-induced toxicity of the digestive tract is a major clinical concern as many cancer survivors have received radiotherapy for tumours of the abdominopelvic area. The coordination and orchestration of a tissue's response to stress depend not only on the phenotype of the cells that make up the tissue but also on cell-cell interactions. The digestive system, i.

View Article and Find Full Text PDF

Purpose: The RadioTransNet project is a French initiative structuring preclinical and translational research in radiation therapy for cancer at national level. The network's activities are organized around four chosen priorities, which are: target definition, normal tissue, combined treatments and dose modelling. The subtargets linked to these four major priorities are unlimited.

View Article and Find Full Text PDF

In vitro modeling of the different steps of immune cell recruitment is essential to decipher the role of endothelial cells in this process. Here, we present a protocol for the assessment of human monocyte transendothelial migration using a live cell imaging system. We describe steps for culture of fluorescent monocytic THP-1 cells and chemotaxis plate preparation with HUVEC monolayers.

View Article and Find Full Text PDF

Background: Cellular therapy seems to be an innovative therapeutic alternative for which mesenchymal stem cells (MSCs) have been shown to be effective for interstitial and hemorrhagic cystitis. However, the action of MSCs on chronic radiation cystitis (CRC) remains to be demonstrated. The aim of this study was to set up a rat model of CRC and to evaluate the efficacy of MSCs and their mode of action.

View Article and Find Full Text PDF

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions.

View Article and Find Full Text PDF
Article Synopsis
  • TRIAP1 is a protein linked to cancer survival, showing increased expression in various cancers while playing a role in lipid transfer within mitochondria.
  • In colorectal cancer cells, TRIAP1 promotes cell growth and tumor formation, with its depletion disturbing mitochondrial structure and affecting lipid balance in the endoplasmic reticulum.
  • Lack of TRIAP1 triggers a strong p53-mediated stress response and enhances resistance to metabolic stresses like glutamine deprivation, underscoring its importance in cancer metabolism and adaptability.
View Article and Find Full Text PDF

Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder.

View Article and Find Full Text PDF

Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation.

View Article and Find Full Text PDF

Background: Transforming growth factor-beta (TGFβ) can limit the efficacy of cancer treatments, including radiotherapy (RT), by inducing an immunosuppressive tumor environment. The association of TGFβ with impaired T cell infiltration and antitumor immunity is known, but the mechanisms by which TGFβ participates in immune cell exclusion and limits the efficacy of antitumor therapies warrant further investigations.

Methods: We used the clinically relevant TGFβ receptor 2 (TGFβR2)-neutralizing antibody MT1 and the small molecule TGFβR1 inhibitor LY3200882 and evaluated their efficacy in combination with RT against murine orthotopic models of head and neck and lung cancer.

View Article and Find Full Text PDF

Chronic radiation cystitis (CRC) is a consequence of pelvic radiotherapy and affects 5-10% of patients. The pathology of CRC is without curative treatment and is characterized by incontinence, pelvic pain and hematuria, which severely degrades patients' quality of life. Current management strategies rely primarily on symptomatic measures and have certain limitations.

View Article and Find Full Text PDF

The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.

View Article and Find Full Text PDF

Lung stereotactic body radiation therapy is characterized by a reduction in target volumes and the use of severely hypofractionated schedules. Preclinical modeling became possible thanks to rodent-dedicated irradiation devices allowing accurate beam collimation and focal lung exposure. Given that a great majority of publications use single dose exposures, the question we asked in this study was as follows: in incremented preclinical models, is it worth using fractionated protocols or should we continue focusing solely on volume limitation? The left lungs of C57BL/6JRj mice were exposed to ionizing radiation using arc therapy and 3 × 3 mm beam collimation.

View Article and Find Full Text PDF

The place of personalized treatments is highly increasing in medical and radiation oncology. During the last decades, a huge number of assays have been developed to predict responses of normal tissues and tumours. These tests have not yet been included into daily clinical practice but the recent developments of radiation oncology are paving the way of personalized strategies including the risk of tumour recurrence and normal tissue reactions.

View Article and Find Full Text PDF

Purpose: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice.

View Article and Find Full Text PDF

Osteoradionecrosis (ORN) is one of the most feared side effects of radiotherapy following cancers of the upper aero-digestive tract and leading to severe functional defects in patients. Today, our lack of knowledge about the physiopathology restricts the development of new treatments. In this study, we refined the ORN rat model and quantitatively studied the progression of the disease.

View Article and Find Full Text PDF

The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging.

View Article and Find Full Text PDF

Purpose: Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams.

Material And Methods: To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.

View Article and Find Full Text PDF

Background: The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties.

View Article and Find Full Text PDF

The importance of dosimetry protocols and standards for radiobiological studies is self-evident. Several protocols have been proposed for dose determination using low energy X-ray facilities, but depending on the irradiation configurations, samples, materials or beam quality, it is sometimes difficult to know which protocol is the most appropriate to employ. We, therefore, propose a dosimetry protocol for cell irradiations using low energy X-ray facility.

View Article and Find Full Text PDF