Publications by authors named "Millership S"

Article Synopsis
  • GLP-1 receptor agonists are effective for treating type 2 diabetes and obesity, but patient responses vary due to genetic differences.
  • A specific genetic variant (A316T) shows protective effects against T2D and cardiovascular disease and leads to improved blood glucose and insulin levels in a mouse model.
  • However, this variant results in reduced effectiveness when using GLP-1R agonist medications, highlighting the need to understand genetic variations for personalized treatment strategies.
View Article and Find Full Text PDF

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the heterogeneous nature of beta cells in the pancreatic islet, highlighting how different subpopulations contribute uniquely to insulin secretion, especially in the context of type 2 diabetes.
  • It examines the role of the imprinted gene neuronatin (NNAT) in insulin synthesis and its expression patterns in both mice and human beta cells, suggesting that epigenetic changes may influence beta cell function.
  • Utilizing advanced techniques like single-cell RNA sequencing and proteomics, the research indicates that distinct beta cell populations emerge during embryonic development, regulated by DNA methylation processes.
View Article and Find Full Text PDF

Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations.

View Article and Find Full Text PDF
Article Synopsis
  • Synucleins are a family of proteins, with α-synuclein being primarily linked to Parkinson's disease, but the roles of other family members like β-synuclein and γ-synuclein in neurotransmission are less understood.
  • This study found that mice lacking β-synuclein showed decreased dopamine uptake in synaptic vesicles, while reintroducing β-synuclein improved this function, unlike α-synuclein or γ-synuclein.
  • The findings suggest that β-synuclein may enhance dopamine uptake by altering the protein structure of synaptic vesicles, potentially protecting dopaminergic neurons from toxic effects associated with Parkinson's disease.
View Article and Find Full Text PDF

Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed 'imprinted' genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets.

View Article and Find Full Text PDF

Diabetes mellitus now affects more than 400 million individuals worldwide, with significant impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin secretion underlie all forms of the disease, the molecular mechanisms which drive them are still poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play critical roles in "pacing" overall islet activity.

View Article and Find Full Text PDF

Aims/hypothesis: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B.

Methods: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis.

View Article and Find Full Text PDF

Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults.

View Article and Find Full Text PDF
Article Synopsis
  • Sympathetic nervous system and immune cell interactions are crucial for regulating metabolism, particularly how macrophages influence obesity through the activation of brown adipose tissue (BAT) and the "beiging" of white adipose tissue (WAT).
  • A new mouse model lacking Irs2 in specific immune cells showed resistance to obesity and better glucose control on a high-fat diet due to increased BAT activity and WAT beiging.
  • The study revealed that while macrophages don’t produce catecholamines, the Irs2-deficient mice had increased sympathetic nerve density and catecholamine levels in adipose tissue, suggesting a novel macrophage signaling pathway that could inform obesity treatments.
View Article and Find Full Text PDF

Objective: Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin.

View Article and Find Full Text PDF

Objectives: To examine the differences in outcomes related to variable provision of antivirals in care home respiratory outbreaks.

Study Design: This is a retrospective observational study.

Methods: Routinely collected outbreak surveillance data reported from care home staff was recorded using a standard template and extracted from the Public Health England health protection electronic records.

View Article and Find Full Text PDF

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in β cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess.

View Article and Find Full Text PDF

Synucleins are involved in multiple steps of the neurotransmitter turnover, but the largely normal synaptic function in young adult animals completely lacking synucleins suggests their roles are dispensable for execution of these processes. Instead, they may be utilized for boosting the efficiency of certain molecular mechanisms in presynaptic terminals, with a deficiency of synuclein proteins sensitizing to or exacerbating synaptic malfunction caused by accumulation of mild alterations, which are commonly associated with aging. Although functional redundancy within the family has been reported, it is unclear whether the remaining synucleins can fully compensate for the deficiency of a lost family member or whether some functions are specific for a particular member.

View Article and Find Full Text PDF

The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders.

View Article and Find Full Text PDF

Background: Respiratory virus infections, including influenza, are an important cause of potentially avoidable hospital admissions in the elderly. Although recent reviews have questioned the efficacy of oseltamivir in the prevention of transmission, it has been a central part of the authors' strategy to manage outbreaks in residential homes.

Aim: To evaluate the management of respiratory virus infection outbreaks in residential homes, with particular emphasis on the logistics and effectiveness of antiviral prophylaxis with oseltamivir.

View Article and Find Full Text PDF

In the context of the increasing incidence of extended-spectrum beta-lactamase (ESBL) Escherichia coli infection, this prospective frequency-matched case-control study aimed to identify risk factors that would provide information and guidance for local clinical practice. One hundred and twelve participants were recruited: 54 cases and 58 controls. Univariate analysis indicated that isolation of an ESBL-producing E.

View Article and Find Full Text PDF

Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature.

View Article and Find Full Text PDF

Synucleins are a family of homologous, predominantly neuronal proteins known for their involvement in synaptic transmission and neurodegeneration. γ-synuclein is predominantly localized in axons and presynaptic terminals of selected populations of peripheral and central neurons but is also highly expressed in human white adipose tissue (WAT) and increased in obesity. We have recently shown that γ-synuclein is nutritionally regulated in murine adipocytes while its loss protects mice from high fat diet (HFD)-induced obesity and associated metabolic complications.

View Article and Find Full Text PDF

Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction.

View Article and Find Full Text PDF

Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. γ-Synuclein is highly expressed in human white adipose tissue and increased in obesity. Here we show that γ-synuclein is nutritionally regulated in white adipose tissue whereas its loss partially protects mice from high-fat diet (HFD)-induced obesity and ameliorates some of the associated metabolic complications.

View Article and Find Full Text PDF

This report describes a risk assessment and subsequent actions following isolation of Legionella pneumophila serogroup 1 in the water supply to a birthing pool during a planned maintenance programme. A literature search for cases of neonatal legionellosis identified 24 reports of cases among babies aged <2 months, two of which were associated with water births. On this basis, the pool was closed until Legionella spp.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterised by substantial loss of both upper and lower motor neuron function, with sensory and cognitive systems less affected. Though heritable forms of the disease have been described, the vast majority of cases are sporadic with poorly defined underlying pathogenic mechanisms. Here we demonstrate that the neurological pathology induced in transgenic mice by overexpression of γ-synuclein, a protein not previously associated with ALS, recapitulates key features of the disease, namely selective damage and loss of discrete populations of upper and lower motor neurons and their axons, contrasted by limited effects upon the sensory system.

View Article and Find Full Text PDF