Machine learning and artificial intelligence tools were used to investigate the discriminatory potential of blood serum metabolites for thromboembolism and antiphospholipid syndrome (APS). H-NMR-based metabonomics data of the serum samples of patients with arterial or venous thromboembolism (VTE) without APS (n = 32), thrombotic primary APS patients (APS, n = 32), and healthy controls (HCs) (n = 32) were investigated. Unique metabolic profiles between VTE and HCs, APS and HCs, and between VTE and triple-positive APS groups were indicative of the significant alterations in the metabolic pathways of glycolysis, the TCA cycle, lipid metabolism, and branched-chain amino acid (BCAA) metabolism, and pointed to the complex pathogenesis mechanisms of APS and VTE.
View Article and Find Full Text PDF