Publications by authors named "Millard P"

Enzymatic parameters are classically determined in vitro, under conditions that are far from those encountered in cells, casting doubt on their physiological relevance. We developed a generic approach combining tools from synthetic and systems biology to measure enzymatic parameters in vivo. In the context of a synthetic carotenoid pathway in Saccharomyces cerevisiae, we focused on a phytoene synthase and three phytoene desaturases, which are difficult to study in vitro.

View Article and Find Full Text PDF

Summary: Quantification of growth parameters and extracellular uptake and production fluxes is central in systems and synthetic biology. Fluxes can be estimated using various mathematical models by fitting time-course measurements of the concentration of cells and extracellular substrates and products. A single tool is available to non-computational biologists to calculate extracellular fluxes, but it is hardly interoperable and is limited to a single hard-coded growth model.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the operon in K-12.

View Article and Find Full Text PDF

Encapsulation technology is well established for entrapping active ingredients within an outer shell for their protection and controlled release. However, many solutions employed industrially use nondegradable cross-linked synthetic polymers for shell formation. To curb rising microplastic pollution, regulatory policies are forcing industries to substitute the use of such intentionally added microplastics with environmentally friendly alternatives.

View Article and Find Full Text PDF

The metabolic networks of microorganisms are remarkably robust to genetic and environmental perturbations. This robustness stems from redundancies such as gene duplications, isoenzymes, alternative metabolic pathways, and also from non-enzymatic reactions. In the oxidative branch of the pentose phosphate pathway (oxPPP), 6-phosphogluconolactone hydrolysis into 6-phosphogluconate is catalysed by 6-phosphogluconolactonase (Pgl) but in the absence of the latter, the oxPPP flux is thought to be maintained by spontaneous hydrolysis.

View Article and Find Full Text PDF

For engineered microorganisms, the production of heterologous proteins that are often useless to host cells represents a burden on resources, which have to be shared with normal cellular processes. Within a certain metabolic leeway, this competitive process has no impact on growth. However, once this leeway, or free capacity, is fully utilized, the extra load becomes a metabolic burden that inhibits cellular processes and triggers a broad cellular response, reducing cell growth and often hindering the production of heterologous proteins.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states.

View Article and Find Full Text PDF

Background: Production of 3-hydroxypropionic acid (3-HP) through the malonyl-CoA pathway has yielded promising results in Pichia pastoris (Komagataella phaffii), demonstrating the potential of this cell factory to produce this platform chemical and other acetyl-CoA-derived products using glycerol as a carbon source. However, further metabolic engineering of the original P. pastoris 3-HP-producing strains resulted in unexpected outcomes, e.

View Article and Find Full Text PDF

Acetate, a major by-product of glycolytic metabolism in Escherichia coli and many other microorganisms, has long been considered a toxic waste compound that inhibits microbial growth. This counterproductive auto-inhibition represents a major problem in biotechnology and has puzzled the scientific community for decades. Recent studies have however revealed that acetate is also a co-substrate of glycolytic nutrients and a global regulator of E.

View Article and Find Full Text PDF

There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly.

View Article and Find Full Text PDF

Background And Objective: The Coronavirus Aid, Relief, and Economic Security Act led to the rapid implementation of telemedicine across health care office settings. Whether this transition to telemedicine has any impact on missed appointments is yet to be determined. This study examined the relationship between telemedicine usage and missed appointments during the COVID-19 pandemic.

View Article and Find Full Text PDF

The development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions.

View Article and Find Full Text PDF

Climate warming may be exacerbated if rising temperatures stimulate losses of soil carbon to the atmosphere. The direction and magnitude of this carbon-climate feedback are uncertain, largely due to lack of knowledge of the thermal adaptation of the physiology and composition of soil microbial communities. Here, we applied the macromolecular rate theory (MMRT) to describe the temperature response of the microbial decomposition of soil organic matter (SOM) in a natural long-term warming experiment in a geothermally active area in New Zealand.

View Article and Find Full Text PDF

Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed.

View Article and Find Full Text PDF

l-Rhamnose and l-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde, whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol, whereas under aerobic conditions, it should be oxidized into lactate and then channeled into the central metabolism.

View Article and Find Full Text PDF

The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied using animal models. In this review, we describe how the zebrafish () has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with imaging of transparent embryos and larvae.

View Article and Find Full Text PDF

We have developed a robust workflow to measure high-resolution fluxotypes (metabolic flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved by optimizing and automating the whole high-throughput fluxomics process and integrating all relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes in the central carbon metabolism in a fully automated manner.

View Article and Find Full Text PDF

Overflow metabolism refers to the production of seemingly wasteful by-products by cells during growth on glucose even when oxygen is abundant. Two theories have been proposed to explain acetate overflow in - global control of the central metabolism and local control of the acetate pathway - but neither accounts for all observations. Here, we develop a kinetic model of metabolism that quantitatively accounts for observed behaviours and successfully predicts the response of to new perturbations.

View Article and Find Full Text PDF

Phosphorylated metabolites are omnipresent in cells, but their analytical characterization faces several technical hurdles. Here, we detail an improved NMR workflow aimed at assigning the high-resolution subspectrum of the phospho-metabolites in a complex mixture. Combining a pure absorption -resolved spectrum (Pell, A.

View Article and Find Full Text PDF

Intrinsically disordered proteins and regions with their associated short linear motifs play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates interactions between MYC and MYB transcription factors in that are critical for constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense compounds that evolved in the ancestor of the Brassicales order.

View Article and Find Full Text PDF

Plant growth is usually constrained by the availability of nutrients, water, or temperature, rather than photosynthetic carbon (C) fixation. Under these conditions leaf growth is curtailed more than C fixation, and the surplus photosynthates are exported from the leaf. In plants limited by nitrogen (N) or phosphorus (P), photosynthates are converted into sugars and secondary metabolites.

View Article and Find Full Text PDF

Background: Circumcision has been shown to reduce the rate of HIV transmission in Africa. It is most cost effective if performed in younger men. Surgical assist devices can increase the efficiency and potentially reduce the cost of performing circumcisions.

View Article and Find Full Text PDF