The HLA region, especially HLA class I and II genes, which encode molecules for antigen presentation to T cells, plays a major role in the predisposition to autoimmune disorders. To clarify the mechanisms behind this association, we examined genome-wide DNA methylation by microarrays to cover over 850,000 CpG sites in the CD4 T cells and CD19 B cells of healthy subjects homozygous either for DRB1*15-DQA1*01-DQB1*06:02 (DR2-DQ6, n = 14), associated with a strongly decreased T1D risk, DRB1*03-DQA1*05-DQB1*02 (DR3-DQ2, n = 19), or DRB1*04:01-DQA1*03-DQB1*03:02 (DR4-DQ8, n = 17), associated with a moderately increased T1D risk. In total, we discovered 14 differentially methylated CpG probes, of which 10 were located in the HLA region and six in the HLA-DRB1 locus.
View Article and Find Full Text PDFPrevious studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study.
View Article and Find Full Text PDFEnteroviral infections have been linked to the development of islet autoimmunity (IA) and type 1 diabetes (T1D), and the coxsackie and adenovirus receptor (CXADR) is one of the ligands used by adenoviruses and enteroviruses for cell internalization. Two single nucleotide polymorphisms (SNPs), rs6517774 and rs2824404, were previously associated with an increased susceptibility to IA in the international TEDDY study (The Environmental Determinants of Diabetes in the Young). This study aimed to replicate the results by genotyping 2886 children enrolled in the Finnish Diabetes Prediction and Prevention study (DIPP).
View Article and Find Full Text PDFThe non-HLA loci conferring susceptibility to type 1 diabetes determine approximately half of the genetic disease risk, and several of them have been shown to affect immune-cell or pancreatic β-cell functions. A number of these loci have shown associations with the appearance of autoantibodies or with progression from seroconversion to clinical type 1 diabetes. In the current study, we have re-analyzed 21 of our loci with prior association evidence using an expanded DIPP follow-up cohort of 976 autoantibody positive cases and 1,910 matched controls.
View Article and Find Full Text PDFObjective: The pathogenesis of type 1 diabetes (T1D) is associated with genetic predisposition and immunological changes during presymptomatic disease. Differences in immune cell subset numbers and phenotypes between T1D patients and healthy controls have been described; however, the role and function of these changes in the pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease.
View Article and Find Full Text PDFDysfunction of FOXP3-positive regulatory T cells (Tregs) likely plays a major role in the pathogenesis of multiple autoimmune diseases including type 1 diabetes (T1D). Whether genetic polymorphisms associated with the risk of autoimmune diseases affect Treg frequency or function is currently unclear. Here, we analysed the effect of T1D-associated major HLA class II haplotypes and seven single nucleotide polymorphisms in six non-HLA genes [INS (rs689), PTPN22 (rs2476601), IL2RA (rs12722495 and rs2104286), PTPN2 (rs45450798), CTLA4 (rs3087243), and ERBB3 (rs2292239)] on peripheral blood Treg frequencies.
View Article and Find Full Text PDF