Publications by authors named "Miljevic B"

The main focus of this research was the bio-stimulated healing of cracks in lime mortar samples (historical and newly designed). The investigation started from comprehensive characterisation of historical mortars, while in the next stage a compatible conservation mortar was designed and characterised, with special attention given to the contact zone formation between original and conservation mortars. The next step was the design of a bio-stimulating crack-sealing agent, a two-component liquid system: bacteria culture DSM 33 and nutrients.

View Article and Find Full Text PDF

In this work, the radon emanation coefficients for selected building materials that are most often used in Serbia for covering floor surfaces (concrete, concrete screed, granite, glazed ceramic tiles, marble, roofing tile, and terrazzo tile) were determined, and the influence of the material structure on their values. The concentration ofRa activity in the samples was determined using the gamma spectrometry method. Radon emanation was measured with the RAD7 device.

View Article and Find Full Text PDF

Black carbon (BC) aerosols significantly contribute to radiative budgets globally, however their actual contributions remain poorly constrained in many under-sampled ocean regions. The tropical waters north of Australia are a part of the Indo-Pacific warm pool, regarded as a heat engine of global climate, and are in proximity to large terrestrial sources of BC aerosols such as fossil fuel emissions, and biomass burning emissions from northern Australia. Despite this, measurements of marine aerosols, especially BC remain elusive, leading to large uncertainties and discrepancies in current chemistry-climate models for this region.

View Article and Find Full Text PDF

The radical reactions of dimethylsulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) with reactive oxygen species (ROS) in the presence of a nitroxide radical scavenger have been evaluated both synthetically and in analytical practice. Fenton-mediated generation of oxygen-centred radicals produced several unusual products that reflect the fragmentation and ring-opening radical mechanisms of DMSO and THTO respectively. Addition of pollution-derived ROS to DMSO/THTO nitroxide solutions produced LC-MS detectable amounts of the same products isolated from the larger-scaled Fenton reactions.

View Article and Find Full Text PDF

In this paper, phosphogypsum (PG) with the content of Ra of about 500 Bq kg was used as a clay additive in mass ratios of (0-40) % and its influence on the radiological and mineralogical characteristics of the obtained brick samples was monitored. After sintering the samples at 1000 ℃, the formation of the mineral phase gehlenite was observed, and its share increased with the share of PG in the samples. The Monte Carlo method was used to determine the gamma dose rates, and consequently annual effective dose, for a standard room, with dimensions 4 × 5 × 2.

View Article and Find Full Text PDF

Nowadays, great focus is given to the contamination of surface and groundwater because of the extensive usage of pesticides in agriculture. The improvements of commercial catalyst TiO activity using different Au nanoparticles were investigated for mesotrione photocatalytic degradation under simulated sunlight. The selected system was 2.

View Article and Find Full Text PDF

This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.

View Article and Find Full Text PDF

The chemical composition and evolution of secondary organic aerosol (SOA) in the atmosphere represents one of the largest uncertainties in our current understanding of air quality. Despite vast research, the toxicological mechanisms relating to adverse human health effects upon exposure to particulate matter are still poorly understood. Particle-bound reactive oxygen species (ROS) may substantially contribute to observed health effects by influencing aerosol oxidative potential (OP).

View Article and Find Full Text PDF

Particle emission characteristics and engine performance were investigated from an auxiliary, heavy duty, six-cylinder, turbocharged and after-cooled diesel engine with a common rail injection system using spiked fuels with different combinations of sulphur (S) and vanadium (V) spiking. The effect of fuel S content on both particle number (PN) and mass (PM) was clearly observed in this study. Higher PN and PM were observed for fuels with higher S contents at all engine load conditions.

View Article and Find Full Text PDF

Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO and HO, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol-gel route, using titanium tetrachloride (TiCl) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization.

View Article and Find Full Text PDF

The surface modification of commercial TiO Hombikat (TiO) using nanoparticles of fullerene C with tetrahydrofuran (THF-nC), as well as fullerenol C(OH) nanoparticles (FNP) was investigated in this study. Characterization of THF-nC, FNP, TiO, TiO/THF-nC, and TiO/FNP was studied by using DES, ELS, TEM, SEM, DRS and BET measurements and their photoactivity has been examined on the mesotrione degradation under simulated sunlight. It was found that FNP in self-assembled nanocomposite TiO/FNP increased negatively charge, as well as catalytic surface of TiO.

View Article and Find Full Text PDF

The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (μg kg dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑ PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former.

View Article and Find Full Text PDF

Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging.

View Article and Find Full Text PDF

Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts.

View Article and Find Full Text PDF

Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District.

View Article and Find Full Text PDF
Article Synopsis
  • Open biomass burning from wildfires and prescribed forest and farmland burning is common in South-East Queensland, with a study conducted from September 10-30, 2011, to assess its effects on air quality in Brisbane.
  • During the burning period, air pollutants showed significant increases (20% to 430%) compared to before and after the burning, with some concentrations like PM10 and PM2.5 exceeding WHO guidelines.
  • The research highlighted that most pollutants were more uniformly distributed during the burning phase, and the elevated levels of specific organic tracers indicated that a majority of pollution came from prescribed burns.
View Article and Find Full Text PDF

Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel.

View Article and Find Full Text PDF

The charge and chemical composition of ambient particles in an urban environment were determined using a neutral particle and air ion spectrometer and an aerodyne compact time-of-flight aerosol mass spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulfate, which were not observed in the organic fraction.

View Article and Find Full Text PDF

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuel's constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential.

View Article and Find Full Text PDF

Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints.

View Article and Find Full Text PDF

Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC.

View Article and Find Full Text PDF
Article Synopsis
  • Diesel particulate matter (DPM) emissions are a significant source of air pollution and are linked to increased respiratory health issues, but it's challenging to pinpoint which specific components cause harm.
  • This review analyzes the physical and chemical properties of DPM, highlighting how its surface area and organic compounds contribute to respiratory illnesses.
  • The paper discusses various injury mechanisms, including inflammation and oxidative stress, advocating for better understanding to protect vulnerable populations from air pollution's adverse effects.
View Article and Find Full Text PDF

This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects.

View Article and Find Full Text PDF

Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS).

View Article and Find Full Text PDF

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement.

View Article and Find Full Text PDF