The recognized contribution of antioxidant compounds to overall health maintenance and spotted deficiencies in celiac patients' diets has driven more intensive research regarding antioxidant compounds' inclusion in gluten-free bread (GFB) production during the last decade. The presented review gathered information that provided insights into plant-based antioxidant sources which are applicable in GFB production through the resulting changes in the technological, sensory, and nutritional quality of the resulting antioxidant-enriched GFB. The influence of the bread-making process on the antioxidant compounds' content alteration and applied methods for their quantification in GFB matrices were also discussed, together with strategies for enhancing the antioxidant compounds' content, their bioaccessibility, and their bioavailability, highlighting the existing contradictions and constraints.
View Article and Find Full Text PDFResearch Background: By tailoring dietary fibre's structural and physicochemical properties, their functionality and applicability can be remarkably increased. One of the approaches used in this respect is fibre particle size reduction. Accordingly, the present study explores the impact of short-time micronization in a planetary ball mill on structural and thermal changes of modified and commercial sugar beet fibre, inulin and sucrose for their potential application as food excipients.
View Article and Find Full Text PDFThe effect of convective hot air and vacuum drying alone and combined with germination on alfalfa seeds' proximate composition, techno-functional, thermal and structural properties was investigated. Corresponding properties of treated alfalfa samples were compared with those of commercially available alfalfa sprouts. Both drying and combined germination and drying treatments resulted in increased carbohydrates (41.
View Article and Find Full Text PDFThe presented study examined the influence of hydroxypropylmethylcellulose (HPMC), sugar beet fibre (SBF) and apple fibre (AF) incorporation coupled with adequate water levels on gluten-free (GF) batter rheology, bread quality and sensory characteristics. A Box-Behnken experimental design with independent variables: HPMC quantity (2-4 g/100 g), SBF and AF quantity (3-7 g/100 g) and water quantity (180-230 g/100 g depending on the fibre type) based on a maize flour/starch mixture was applied. GF breads with 4 g/100 g HPMC coupled with 3 g/100 g SBF and 7 g/100 g AF reached the highest specific volumes (2.
View Article and Find Full Text PDF