Reducing the working temperature of solid oxide fuel cells is critical to their increased commercialization but is inhibited by the slow oxygen exchange kinetics at the cathode, which limits the overall rate of the oxygen reduction reaction. We use ab initio methods to develop a quantitative elementary reaction model of oxygen exchange in a representative cathode material, LaSrCoO, and predict that under operating conditions the rate-limiting step for oxygen incorporation from O gas on the stable, (001)-SrO surface is lateral (surface) diffusion of O-adatoms and oxygen surface vacancies. We predict that a high vacancy concentration on the metastable CoO termination enables a vacancy-assisted O dissociation that is 10-10 times faster than the rate limiting step on the Sr-rich (La,Sr)O termination.
View Article and Find Full Text PDFIn this work, we performed density functional theory (DFT) calculations with inclusion of Hubbard U corrections for the transition metal d-electrons, to investigate stability and electrocatalytic activities of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for the ABO3 (A = La; B = Cr, Mn, Fe, Co, and Ni) (001) surfaces. We showed surface binding energies of relevant ORR/OER species are coupled strongly to surface polarity and local oxidation states, giving large (∼1 eV scale per adsorbate) differences in binding between (001) AO and BO2 surfaces, where the more oxidized BO2 bare surfaces in general exhibit weak coverage dependence, while the more reduced AO bare surfaces of the LaCrO3, LaMnO3, and LaFeO3 perovskites with lower d-electron filling show strong/moderate coverage dependences. We then predicted that surface coverage can play a key role in determining surface stability, and when coverage effects are included the AO and BO2(001) surfaces have either similar stability or the AO surface is more stable, as found for 1 monolayer HO* covered AO surfaces of LaCrO3 and LaFeO3 under ORR conditions and 1 monolayer O* covered LaNiO3 AO surface under OER conditions.
View Article and Find Full Text PDFHeterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ grown on SrTiO3.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2012
An interface between the perovskite La(0.8)Sr(0.2)CoO(3-δ) (LSC-113) and the K(2)NiF(4)-type (La(0.
View Article and Find Full Text PDF