Publications by authors named "Milich D"

An effective prophylactic hepatitis B virus (HBV) vaccine has long been available but is ineffective for chronic infection. The primary cause of chronic hepatitis B (CHB) and greatest impediment for a therapeutic vaccine is the direct and indirect effects of immune tolerance to HBV antigens. The resulting defective CD4/CD8 T cell response, poor cytokine production, insufficient neutralizing antibody (nAb) and poor response to HBsAg vaccination characterize CHB infection.

View Article and Find Full Text PDF

The immune response to the hepatitis B virus (HBV) vaccine in newborns of hepatitis B e antigen (HBeAg)-positive or HBeAg-negative mothers is the subject of Huang et al. The authors report no correlation between the HBeAg status of the mothers/cord blood and the newborns immune response to the vaccine, but, unfortunately, draw unfounded conclusions regarding the tolerogenic potential of exposure to HBeAg. In this reply, I address the possible influence of exposure to the HBeAg, and briefly review other characteristics of the HBeAg, that may promote HBV chronicity.

View Article and Find Full Text PDF

In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the most common cause of serious viral bronchiolitis in infants, young children, and the elderly. Currently, there is not an FDA-approved vaccine available for RSV, though the mAb palivizumab is licensed to reduce the incidence of RSV disease in premature or at-risk infants. The palivizumab epitope is a well-characterized, approximately 24-aa helix-loop-helix structure on the RSV fusion (F) protein (F254-277).

View Article and Find Full Text PDF

Current therapies for the hepatitis B virus (HBV), a major cause of severe liver disease, suppress viral replication but replication rebounds if therapy is withdrawn. It is widely accepted that immune activation is needed to control replication off-therapy. To specifically activate T cells crossreactive between the hepatitis B core and e antigens (HBcAg/HBeAg) in chronically infected patients, we developed a therapeutic vaccine candidate.

View Article and Find Full Text PDF

Regulatory T (Treg) cells represent one of the main mechanisms of regulating self-reactive immune cells. Treg cells are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery. Although the function of Treg cells has been demonstrated in many experimental settings, the precise mechanisms and antigen specificity often remain unclear.

View Article and Find Full Text PDF

The hepatitis C virus (HCV)-specific T cell response in patients with chronic HCV is dysfunctional. In this study, we aimed at restoring immunological function through therapeutic vaccination in a transgenic mouse model with impaired HCV-specific T cell responses due to a persistent presence of hepatic HCV nonstructural (NS)3/4A Ags. The HCV-specific T cells have an actively maintained dysfunction reflected in reduced frequency, impaired cytokine production, and impaired effector function in vivo, which can be partially restored by blocking regulatory T cells or programmed cell death ligand 1.

View Article and Find Full Text PDF

The use of live recombinant attenuated Salmonella vaccines (RASV) is a promising approach for controlling infections by multiple pathogens. The highly conserved extracellular domain of the influenza M2 protein (M2e) has been shown to provide broad spectrum protection against multiple influenza subtypes sharing similar M2e sequences. An M2e epitope common to a number of avian influenza subtypes was inserted into the core antigen of woodchuck hepatitis virus and expressed in two different recombinant attenuated Salmonella Typhimurium strains.

View Article and Find Full Text PDF

Hepatitis B virus core antigen (HBcAg) is thought to be a major target for specific cytotoxic T cells (CTLs) in hepatitis B virus infections. A single dose of hepatitis C virus nonstructural 3/4A DNA (<5 microg) effectively primes functional specific CTLs, independently of CD4(+) T helper cells and by different routes of immunization. In contrast, HBcAg-specific CTL priming was T helper cell dependent and highly sensitive to the dose and route of delivery.

View Article and Find Full Text PDF

The first virus-like particle to be tested for use as a vaccine carrier was based on the hepatitis B virus nucleocapsid protein. This viral subunit, while not infectious on its own, is a 36-nm particle that is highly immunogenic during a natural infection. The self-assembly and high degree of immunogenicity is maintained when expressed as a recombinant protein and, moreover, can confer a high degree of immunogenicity on foreign antigens linked to the particle, either chemically or genetically.

View Article and Find Full Text PDF

Previous studies demonstrated that the primary APCs for the hepatitis B core Ag (HBcAg) were B cells and not dendritic cells (DC). We now report that splenic B1a and B1b cells more efficiently present soluble HBcAg to naive CD4(+) T cells than splenic B2 cells. This was demonstrated by direct HBcAg-biotin-binding studies and by HBcAg-specific T cell activation in vitro in cultures of naive HBcAg-specific T cells and resting B cell subpopulations.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) expresses two structural forms of the nucleoprotein, the intracellular nucleocapsid (hepatitis core antigen [HBcAg]) and the secreted nonparticulate form (hepatitis e antigen [HBeAg]). The aim of this study was to evaluate the ability of HBcAg- and HBeAg-specific genetic immunogens to induce HBc/HBeAg-specific CD4(+)/CD8(+) T-cell immune responses and the potential to induce liver injury in HBV-transgenic (Tg) mice. Both the HBcAg- and HBeAg-specific plasmids primed comparable immune responses.

View Article and Find Full Text PDF

The hepatitis B core antigen (HBcAg) has been proposed as a useful particulate carrier platform for poorly immunogenic peptidic and carbohydrate B cell epitopes. However, biochemical and immunologic impediments have plagued this technology. Specifically, the "assembly" problem characterized by the low yield of unstable hybrid particles resulting from the insertion of foreign sequences and the "pre-existing immunity" problem due to the fact that the HBcAg is derived from a human pathogen have limited the development of this carrier technology.

View Article and Find Full Text PDF

Background: The hepatitis C virus (HCV) establishes chronic infection by incompletely understood mechanisms. The non-structural (NS) 3/4A protease/helicase has been proposed as a key complex in modulating the infected hepatocyte, although nothing is known about the effects this complex exerts in vivo.

Aim: To generate mice with stable and transient hepatocyte expression of the HCV NS3/4A proteins to study its effects in vivo.

View Article and Find Full Text PDF

The particulate hepatitis core protein (HBcAg) represents an efficient carrier platform with many of the characteristics uniquely required for the delivery of weak immunogens to the immune system. Although the HBcAg is highly immunogenic, the existing HBcAg-based platform technology has a number of theoretical and practical limitations, most notably the "preexisting immunity" and "assembly" problems. To address the assembly problem, we have developed the core protein from the woodchuck hepadnavirus (WHcAg) as a new particulate carrier platform system.

View Article and Find Full Text PDF

The hepatitis B virus core protein (HBcAg) is a uniquely immunogenic particulate antigen and as such has been used as a vaccine carrier platform. The use of other hepadnavirus core proteins as vaccine carriers has not been explored. To determine whether the rodent hepadnavirus core proteins derived from the woodchuck (WHcAg), ground squirrel (GScAg), and arctic squirrel (AScAg) viruses possess immunogen characteristics similar to those of HBcAg, comparative antigenicity and immunogenicity studies were performed.

View Article and Find Full Text PDF

Background: The hepatitis C virus (HCV) mutates within human leucocyte antigen (HLA) class I restricted immunodominant epitopes of the non-structural (NS) 3/4A protease to escape cytotoxic T lymphocyte (CTL) recognition and promote viral persistence. However, variability is not unlimited, and sometimes almost absent, and factors that restrict viral variability have not been defined experimentally.

Aims: We wished to explore whether the variability of the immunodominant CTL epitope at residues 1073-1081 of the NS3 protease was limited by viral fitness.

View Article and Find Full Text PDF

The function of the hepatitis B virus (HBV) precore or HBeAg is largely unknown because it is not required for viral assembly, infection, or replication. However, the HBeAg does appear to play a role in viral persistence. It has been suggested that the HBeAg may promote HBV chronicity by functioning as an immunoregulatory protein.

View Article and Find Full Text PDF

A unique characteristic of the hepatitis B virus is the production of a secreted form (precore or HBeAg) of the structural nucleocapsid (core or HBcAg). By using T cell receptor (TCR) transgenic (Tg) and TCR x HBc/HBeAg double- and triple-Tg pairs, we demonstrate that HBeAg elicits T cell tolerance, whereas HBcAg is nontolerogenic in this system. In fact, TCR x HBc double-Tg mice spontaneously seroconvert to IgG anti-HBc positivity at an early age.

View Article and Find Full Text PDF

The function of the hepatitis B e antigen (HBeAg) is largely unknown because it is not required for viral assembly, replication, or infection. In this report we chronicle clinical and experimental studies in an attempt to understand the role of HBeAg in natural infection. These studies largely have focused on clinical-pathologic features of HBeAg-negative variants in acute and chronic HBV infection, mutational analysis in animal models of hepadnavirus infection, and the use of transgenic murine models.

View Article and Find Full Text PDF

The major envelope protein of the hepatitis B virus (HBV), the HBsAg, constitutes the current preventative vaccine, which represents the first subunit viral vaccine developed. The genetics of the immune response to HBsAg has been extensively studied both in humans and mice. Murine studies begun over 20 years ago indicated that at least two MHC class II and one MHC class III genes regulate anti-HBs immune responses.

View Article and Find Full Text PDF

Objective: The recent success of a Plasmodium falciparum malaria vaccine consisting of circumsporozoite (CS) protein (CSP) T and B cell epitopes has rekindled interest in the development of a pre-erythrocytic vaccine. Our goal was to design an efficient delivery system for known neutralizing epitopes.

Methods: Well-characterized CSP-specific neutralizing B cell epitopes and a 'universal' T cell epitope were combined with a particulate carrier platform, the hepatitis B core antigen (HBcAg), to produce a novel pre-erythrocytic vaccine candidate.

View Article and Find Full Text PDF

The hepatitis B virus (HBV) core antigen (HBcAg) has a unique ability to bind a high frequency of naive human and murine B cells. The role of HBcAg-binding naive B cells in the immunogenicity of HBcAg is not clear. The HBcAg-binding properties of naive B cells were characterized using HBcAg particles with mutated spike region (residues 76-85) sequences.

View Article and Find Full Text PDF