We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications.
View Article and Find Full Text PDFTyrosine-type site-specific recombinases (Y-SSRs) are versatile tools for genome engineering due to their ability to mediate excision, integration, inversion and exchange of genomic DNA with single nucleotide precision. The ever-increasing need for sophisticated genome engineering is driving efforts to identify novel SSR systems with intrinsic properties more suitable for particular applications. In this work, we develop a systematic computational workflow for annotation of putative Y-SSR systems and apply this pipeline to identify and characterize eight new naturally occurring Cre-type SSR systems.
View Article and Find Full Text PDF