Publications by authors named "Miles Whitmore"

We present an instrument that combines high-resolution optical tweezers and multicolor confocal fluorescence spectroscopy along with automated single-molecule assembly. The multicolor allows the simultaneous observation of multiple molecules or multiple degrees of freedom, which allows, for example, the observation of multiple proteins simultaneously within a complex. The instrument incorporates three fluorescence excitation lasers, with a reliable alignment scheme, which will allow three independent fluorescent probe or FRET measurements and also increases flexibility in the choice of fluorescent molecules.

View Article and Find Full Text PDF

Over the past two decades, one of the standard models of protein folding has been the "two-state" model, in which a protein only resides in the folded or fully unfolded states with a single pathway between them. Recent advances in spatial and temporal resolution of biophysical measurements have revealed "beyond-two-state" complexity in protein folding, even for small, single-domain proteins. In this work, we used high-resolution optical tweezers to investigate the folding/unfolding kinetics of the B1 domain of immunoglobulin-binding protein G (GB1), a well-studied model system.

View Article and Find Full Text PDF

Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword.

View Article and Find Full Text PDF

Acousto-optic (AO) devices have been used extensively in optical tweezers because of their flexibility and speed; however, these devices have trap positioning inaccuracies that limit their usefulness, especially for high-resolution applications. We show that these inaccuracies are due to interference patterns within the AO device sound fields. We have devised a method that removes these inaccuracies by reducing the coherence of the sound fields by directly controlling and randomizing the phase of the radio frequency voltage input signal.

View Article and Find Full Text PDF