HIV-1 capsid protein (CA) is essential for viral replication and interacts with numerous host factors to facilitate successful infection. Thus, CA is an integral target for the study of virus-host dynamics and therapeutic development. The multifaceted functions of CA stem from the ability of CA to assemble into distinct structural components that come together to form the mature capsid core.
View Article and Find Full Text PDFThe HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers.
View Article and Find Full Text PDFWe report the development of an electrochemical aptamer-based sensor for real time detection of tumor necrosis factor-alpha. The focus of this study is to evaluate the effects of the redox label location on the overall sensor performance, including sensor stability, detection limit, reusability, and selectivity. Three aptamer probes, each labeled with methylene blue (MB) at a specific location, were designed and employed in the fabrication of the sensors.
View Article and Find Full Text PDFSolid supported colorimetric sensing arrays have the advantage of portability and ease of use when deployed in the field, such as crime scenes, disaster zones, or in war zones, but many sensor arrays require complex fabrication methods. Here, we report a practical method for the fabrication of 4 × 4 colorimetric sensor arrays, which are printed on nylon membranes, using a commercially available inkjet printer. In order to test the efficacy of the printed arrays, they were exposed to 43 analytes at concentrations ranging from 0.
View Article and Find Full Text PDF