Publications by authors named "Miles Dyck"

Spatial variability in soil pH is a major contributor to within-field variations in soil fertility and crop productivity. An improved understanding of the spatial variability of soil pH within agricultural fields is required to determine liming requirements for precision farming. This study with the use of proximal sensors, firstly assessed the spatial pattern of soil pH and how it can be used to determine site-specific, spatially variable lime requirements.

View Article and Find Full Text PDF

The chemical species of trace elements (TEs) in agricultural soils is highly variable under diverse conditions, requiring tools with clear resolution and minimal disturbance for exploration. A novel surgical (316L) stainless steel (SS) lysimeter with a 5 μm pore size was developed to collect field soil solutions. The size-resolved distribution of TEs were characterized into total (nitric acid digestion), particulate (0.

View Article and Find Full Text PDF

We investigate the effect of laser wavelength on laser-induced breakdown spectroscopy (LIBS) on the measurement of carbon in agricultural soils. Two laser wavelengths, 1064 nm and 532 nm, were used to determine soil carbon concentration. No chemical pretreatment, grinding, or pelletization was performed on soil samples to simulate in-field conditions.

View Article and Find Full Text PDF

Accurate measurement of plant transpiration is critical to gaining a better understanding of plant water use and exploration of the influence of plants on regional and even global climate. Heat tracer-based sap flow (HTSF) techniques are currently the dominant method to estimate plant transpiration at the individual plant level. However, the majority of current research focuses on specific applications or the evaluation of the method itself, and there is a lack of an overall analysis of HTSF methods.

View Article and Find Full Text PDF

The non-stationary response of crop growth to changes in hydro-climatic variables makes yield projection uncertain and the design and implementation of adaptation strategies debatable. This study simulated the time-varying behavior of the underlying cause-and-effect mechanisms affecting spring wheat yield (SWY) under various climate change and nitrogen (N) application scenarios in the Red Deer River basin in agricultural lands of the western Canadian Prairies. A calibrated and validated Soil and Water Assessment Tool and Analysis of Variance decomposition methods were utilized to assess the contribution of crop growth parameters, Global Climate Models, Representative Concentration Pathways, and downscaling techniques to the total SWY variance for the 2040-2064 period.

View Article and Find Full Text PDF

Increasing nitrogen fertilization and irrigation can contribute to nitrous oxide (NO) emissions from agriculture. Relative to the conventional practice of one-pass fertilization with all N applied at crop seeding, this study examined how splitting the total N fertilization into seeding time and in-crop fertigation impacts NO emission factors (EF) in irrigated wheat (Triticum aestivum) and canola (Brassica napus) in Southern Alberta, Canada during two growing seasons (May to Oct. in 2015 and 2016).

View Article and Find Full Text PDF

Soil freeze-thaw cycles (FTCs) change the physical and chemical properties of soils; however, information is limited about the consequences for heavy metal sorption and desorption. Lead (Pb) sorption isotherms and successive desorption tests were measured for three soils from North China (Chestnut, Lou and Black), following multiple freeze-thaw cycles (0, 1, 3, 6 and 9 FTCs) of -5 °C for 12 h and then +5 °C for 12 h. Lead adsorption dominated the sorption processes for all soils, and sorption capacity increased with additional FTCs.

View Article and Find Full Text PDF

On-site wastewater treatment systems are commonly used in sparsely populated areas where capital-intensive centralized wastewater treatment facilities are not feasible. The primary objective of this work was to investigate vadose zone and groundwater transport of a bromide (Br) tracer and naturally occurring applied to the soil surface in secondarily treated wastewater at a public rest stop in central Alberta, Canada, with seasonally fluctuating water table (between 0.2 and 1.

View Article and Find Full Text PDF

Vegetative filter strips (VFSs) are a labor-saving and cost-effective agricultural best management practice to trap water runoff and sediment from the source areas. They also provide forage and/or fuel and are therefore potentially profitable for land owners. VFSs are however a dynamic system: the runoff delivery ratio (RDR) and sediment delivery ratio (SDR) vary with growth stage and vegetation types.

View Article and Find Full Text PDF

Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015.

View Article and Find Full Text PDF

This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.

View Article and Find Full Text PDF

Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L.

View Article and Find Full Text PDF

Widespread global changes, including rising atmospheric CO concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices.

View Article and Find Full Text PDF

Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case.

View Article and Find Full Text PDF