Publications by authors named "Miles Crosskey"

Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID.

View Article and Find Full Text PDF

Long COVID, or complications arising from COVID-19 weeks after infection, has become a central concern for public health experts. The United States National Institutes of Health founded the RECOVER initiative to better understand long COVID. We used electronic health records available through the National COVID Cohort Collaborative to characterize the association between SARS-CoV-2 vaccination and long COVID diagnosis.

View Article and Find Full Text PDF

Importance: Characterizing the effect of vaccination on long COVID allows for better healthcare recommendations.

Objective: To determine if, and to what degree, vaccination prior to COVID-19 is associated with eventual long COVID onset, among those a documented COVID-19 infection.

Design Settings And Participants: Retrospective cohort study of adults with evidence of COVID-19 between August 1, 2021 and January 31, 2022 based on electronic health records from eleven healthcare institutions taking part in the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, a project of the National Covid Cohort Collaborative (N3C).

View Article and Find Full Text PDF

Computable phenotypes are algorithms that translate clinical features into code that can be run against electronic health record (EHR) data to define patient cohorts. However, computable phenotypes that only make use of structured EHR data do not capture the full richness of a patient's medical record. While natural language processing (NLP) methods have shown success in extracting clinical features from text, the use of such tools has generally been limited to research groups with substantial NLP expertise.

View Article and Find Full Text PDF