Publications by authors named "Miles Benton"

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data.

View Article and Find Full Text PDF

DNA methylation is an epigenetic factor that is modifiable and can change over a lifespan. While many studies have identified methylation sites (CpGs) related to aging, the relationship of these to gene function and age-related disease phenotypes remains unclear. This research explores this question by testing for the conjoint association of age-related CpGs with gene expression and the relation of these to body fat phenotypes.

View Article and Find Full Text PDF

Background: Beta thalassemia, related to HBB mutation and associated with elevated hemoglobin A2 (HbA2), is an important genetic hemoglobinopathy with high incidences of disease and carrier rates in Singapore. Carrier screening is essential to facilitate prenatal counseling and testing. However, when individuals with elevated HbA2 do not have an identifiable HBB disease-associated variant, there is ambiguity on risk to their offspring.

View Article and Find Full Text PDF

Sanger sequencing of the mitochondrial DNA (mtDNA) control region was previously the only method available for forensic casework involving degraded samples from skeletal remains. The introduction of Next Generation Sequencing (NGS) has transformed genetic data generation and human identification using mtDNA. Whole mitochondrial genome (mtGenome) analysis is now being introduced into forensic laboratories around the world to analyze historical remains.

View Article and Find Full Text PDF

Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple Sclerosis (MS), are reliant on per-SNP -values and are therefore heavily burdened by multiple testing correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required, while ignoring potentially valuable information that is readily available in existing datasets. To overcome this, we used penalised regression incorporating elastic net with a stability selection method by iterative subsampling to detect the potential interaction of loci with MS risk.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a persistent impairment of kidney function. Genome-wide association studies (GWAS) have revealed multiple genetic loci associated with CKD susceptibility but the complete genetic basis is not yet clear. Since CKD shares risk factors with cardiovascular diseases and diabetes, there may be pleiotropic loci at play but may go undetected when using single phenotype GWAS.

View Article and Find Full Text PDF

Background And Aims: Natural variation in body fat is explained by both genetic and environmental effects. Epigenetic mechanisms such as DNA methylation can mediate these effects causing changes in gene expression leading to onset of obesity. Studies of genetic isolates have the potential to provide new epigenetic insights with advantages such as reduced genetic diversity and environmental exposures.

View Article and Find Full Text PDF

Epigenetics plays a fundamental role in cellular development and differentiation; epigenetic mechanisms, such as DNA methylation, are involved in gene regulation and the exquisite nuance of expression changes seen in the journey from pluripotency to final differentiation. Thus, DNA methylation as a marker of cell identify has the potential to reveal new insights into cell biology. We mined publicly available DNA methylation data with a machine-learning approach to identify differentially methylated loci between different white blood cell types.

View Article and Find Full Text PDF

Cannabis use is of increasing public health interest globally. Here we examined the effect of heavy cannabis use, with and without tobacco, on genome-wide DNA methylation in a longitudinal birth cohort (Christchurch Health and Development Study, CHDS). A total of 48 heavy cannabis users were selected from the CHDS cohort, on the basis of their adult exposure to cannabis and tobacco, and DNA methylation assessed from whole blood samples, collected at approximately age 28.

View Article and Find Full Text PDF

It is thought that despite highly variable phenotypic expression, 70-80% of all epileptic cases are caused by one or more genetic mutations. Next generation sequencing technologies, such as whole exome sequencing (WES), can be used in a diagnostic or research setting to identify genetic mutations which may have significant prognostic implications for patients and their families. In this study, 398 genes associated with epilepsy or recurrent seizures were stratified into tiers based on genotype-phenotype concordance, tissue gene expression, frequency of affected individuals with mutations and evidence from functional and family studies.

View Article and Find Full Text PDF

Objective: Adipose tissue plays a key role in obesity-related metabolic dysfunction. MicroRNA (miRNA) are gene regulatory molecules involved in intercellular and inter-organ communication. It was hypothesized that miRNA levels in adipose tissue would change after gastric bypass surgery and that this would provide insights into their role in obesity-induced metabolic dysregulation.

View Article and Find Full Text PDF

Background: Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider importance in terms of gene regulation and disease risk. Here, we studied ASM by focusing on blood-based DNA collected from 24 subjects comprising a 3-generation pedigree from the Norfolk Island genetic isolate.

View Article and Find Full Text PDF

In this article, we introduce the variant call format-diagnostic annotation and reporting tool (VCF-DART), a customized analysis pipeline tool for the rapid annotation of variants from exome or genome sequencing and the generation of reports for genetic diagnostics. VCF-DART uses custom gene lists to categorize variants into specific analysis tiers and to subcategorize them on the basis of standard parameters to facilitate the rapid interrogation of potentially pathogenic variants by human operators. The tool uses publicly available databases to identify a range of data to assist with variant classification and curation processes and includes robust logging of parameters and database versions to allow comparison of analyses performed at different times.

View Article and Find Full Text PDF

Epigenome-wide association studies seek to identify DNA methylation sites associated with clinical outcomes. Difference in observed methylation between specific cell-subtypes is often of interest; however, available samples often comprise a mixture of cells. To date, cell-subtype estimates have been obtained from mixed-cell DNA data using linear regression models, but the accuracy of such estimates has not been critically assessed.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) is a complex disease that involves both inflammation and neurodegeneration in the central nervous system, primarily driven by immune cells like T and B cells.
  • This study focused on examining DNA methylation changes in CD19 B-cells to identify potential genetic factors that may increase MS risk.
  • Significant findings included a notable hypermethylated region at the lymphotoxin alpha (LTA) gene and smaller regions at other MS-related genes, indicating that B-cell DNA methylation could play a role in MS and may lead to new treatment strategies targeting these changes.
View Article and Find Full Text PDF

Background: We investigated the molecular etiology of a young male proband with confirmed immunodeficiency of unknown cause, presenting with recurrent bacterial and Varicella zoster viral infections in childhood and persistent lymphopenia into early adulthood.

Aim: To identify causative functional genetic variants related to an undiagnosed primary immunodeficiency.

Method: Whole genome microarray copy number variant (CNV) analysis was performed on the proband followed by whole exome sequencing (WES) and trio analysis of the proband and family members.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder characterized by an increased predisposition for seizures. Although this definition suggests that it is a single disorder, epilepsy encompasses a group of disorders with diverse aetiologies and outcomes. A genetic basis for epilepsy syndromes has been postulated for several decades, with several mutations in specific genes identified that have increased our understanding of the genetic influence on epilepsies.

View Article and Find Full Text PDF
Article Synopsis
  • Primary open-angle glaucoma (POAG) is affected by both genes we get from our parents and our environment.
  • Researchers studied 330 people from Norfolk Island to see how certain traits linked to eye issues are passed down in families.
  • They found some strong genetic connections between eye traits and immune system genes, showing that our genetics may play a big role in the risk for POAG.
View Article and Find Full Text PDF

Purpose: Primary open-angle glaucoma (POAG) refers to a group of heterogeneous diseases involving optic nerve damage. Two well-established risk factors for POAG are elevated intraocular pressure (IOP) and a thinner central corneal thickness (CCT). These endophenotypes exhibit a high degree of heritability across populations.

View Article and Find Full Text PDF

Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously.

View Article and Find Full Text PDF

Objective: Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity.

Methods: One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role of DNA methylation in multiple sclerosis (MS) using an independent cohort of female patients with relapsing-remitting MS (RRMS) to confirm earlier findings regarding differential methylation regions (DMRs).
  • Researchers extracted genomic DNA from CD4 T cells of RRMS patients and healthy controls, analyzing the methylation patterns to identify significant DMRs associated with the disease.
  • The results reinforced earlier discoveries of specific hypomethylated and hypermethylated DMRs, particularly in the MHC region, suggesting that epigenetic modifications may significantly influence MS pathology regardless of other factors like treatment and age.
View Article and Find Full Text PDF

Background: Epigenetic mechanisms provide an interface between environmental factors and the genome and are known to play a role in complex diseases such as obesity. These mechanisms, including DNA methylation, influence the regulation of development, differentiation and the establishment of cellular identity. Here we employ two approaches to identify differential methylation between two white adipose tissue depots in obese individuals before and after gastric bypass and significant weight loss.

View Article and Find Full Text PDF