Publications by authors named "Milene Szyporta"

Low pathogenic influenza viruses of H6 hemagglutinin (HA) subtype have a high prevalence among aquatic and domestic birds and have caused outbreaks in poultry worldwide. The first human infection with wild avian influenza H6N1 virus was reported in Taiwan and these subtype viruses may continue to evolve and accumulate changes which increasing the potential risk of human-to-human transmission. To develop a vaccine against influenza viruses of the H6 subtype, we displayed the HA gene on the baculovirus surface (Bac-HA), and studied its vaccine efficacy against a lethal challenge with mouse-adapted RG-H6(Shorebird) virus carrying the H6 HA gene from A/shorebird/DE/12/2004 (H6N8) virus and 7 genes from A/Puerto Rico/8/1934 (H1N1) virus.

View Article and Find Full Text PDF

Background: Enterovirus 71 (EV-71) is a neurotropic virus causing Hand, Foot and Mouth Disease (HFMD) in infants and children under the age of five. It is a major concern for public health issues across Asia-Pacific region. The most effective way to control the disease caused by EV-71 is by vaccination thus a novel vaccine is urgently needed.

View Article and Find Full Text PDF

Background: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus.

Methodology/principal Findings: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA).

View Article and Find Full Text PDF

Several large outbreaks of hand-foot-mouth disease (HFMD) have occurred in the Asian-Pacific region since 1997, with Enterovirus 71 (EV71) and/or Coxsackievirus A16 (CAV16) as the main causative agents. Despite the close genetic relationship between the two viruses, only EV71 is associated with severe clinical manifestations and deaths. Effective antiviral treatment and vaccines are not available.

View Article and Find Full Text PDF

Background: The classification of patients into "good" or "poor" mobilizers is based on CD34+ cell count in their peripheral blood (PB) after granulocyte-colony-stimulating factor (G-CSF) injection. We hypothesized that, apart from their mobilization from marrow to the blood, the response to G-CSF of CD34+ cells also includes activation of proliferation, metabolic activity, and proliferative capacity.

Study Design And Methods: Mobilized PB CD34+ cells purified from samples obtained by cytapheresis of multiple myeloma or non-Hodgkin's lymphoma patients of both good (>50 CD34+ cells/microL) and poor (< or =50 CD34+ cells/microL) mobilizers were studied.

View Article and Find Full Text PDF

Background: During short-term storage of hematopoietic cells (HCs) at 4°C a substantial decline in number and in functional capacity of progenitors occurs after 3 days. We hypothesized that physiologic O2 and CO2 concentrations of hematopoietic tissue microenvironment (approx. 3% O2 and approx.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype has caused devastating damage to poultry flocks and sporadic human H5N1 infections. There is concern that this virus subtype may gain transmissibility and become pandemic. Rapid diagnosis and surveillance for H5N1 subtype viruses are critical for the control of H5N1 infection.

View Article and Find Full Text PDF

Background: Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available.

Methodology/principal Findings: Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera.

View Article and Find Full Text PDF