The impact of obesity upon bone metabolism is controversial since both beneficial or harmful effects have been reported. Bone remodeling is modulated by the central nervous system through cytokines, hormones and neuromodulators. The present study aimed to evaluate the effects evoked by bilateral retroperitoneal white adipose tissue (rWAT) denervation (Dnx) upon bone mineral metabolism and remodeling in an experimental model of obesity in rats.
View Article and Find Full Text PDFBackground: Sclerostin plays an important role in bone metabolism and adipose tissue. Animal studies suggest that sclerostin influences urinary calcium (UCa), but this relationship has not been evaluated in stone formers (SFs). We aimed to investigate the association of UCa with serum sclerostin, bone mineral density (BMD), and body composition among SFs.
View Article and Find Full Text PDFBackground: Nephrolithiasis has been associated with bone loss and vascular calcification (VC), reflecting abnormal extraosseous calcium deposition. Fetuin-A (Fet-A) acts as a potent inhibitor of ectopic mineralization. The aim of the present study was to evaluate the prevalence of VC in stone formers (SF) and non-stone formers (NSF) and to investigate potential determinants of VC among SF, including circulating levels of Fet-A and bone microarchitecture parameters.
View Article and Find Full Text PDFBackground: Low areal bone mineral density (BMD), increased fracture risk and altered bone remodeling have been described among stone formers (SFs), but the magnitude of these findings differs by age, sex, menopausal status and urinary calcium (uCa). This study aimed to investigate volumetric BMD (vBMD), bone microarchitecture and biomechanical properties by high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA) in young SFs, irrespective of calciuria, further distinguishing trabecular from cortical compartments.
Methods: HR-pQCT/FEA was performed at the distal tibia (DT) and distal radius (DR) in 106 SFs (57 males and 49 premenopausal females; median age 37 years) and compared with 106 non-SFs (NSFs) retrieved from an existing database, matched for age, sex and body mass index (BMI).
Stem Cells Int
October 2020
Background: Chronic renal artery stenosis is considered one of the most common causes of renovascular hypertension (RH). Chronic hypoxia can lead to irreversible damage to renal tissue and to a progressive deterioration of renal function. We have previously shown that bone marrow-derived mesenchymal stem cells (BMSCs) improved renal parenchyma and function in a model of RH (2 kidneys, 1 clip model (2K-1C) in rats.
View Article and Find Full Text PDFThe expression of vitamin D receptor (VDR) and 1,25-dihydroxyvitamin D [1,25(OH)D] levels exceed the values of controls in some but not all hypercalciuric stone formers (HSF). We aimed to evaluate serum 1,25(OH)D levels, the expression of VDR, CYP27B1, and CYP24A1 hydroxylases in HSF in comparison with normocalciuric stone formers (NSF) and healthy subjects (HS). Blood samples, 24-h urine collections and a 3-day dietary record were obtained from 30 participants from each of the groups.
View Article and Find Full Text PDFBackground/aims: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation and growth, leading to end-stage renal disease. A higher kidney volume is predictive of a more accelerated decline in renal function. This study aimed to examine the effects of caffeine, a phosphodiesterase inhibitor, on the progression of cystic kidney disease in a mouse model orthologous to human disease (Pkd1:Nestin).
View Article and Find Full Text PDFAcute kidney injury is mostly reversible, and hepatocyte growth factor (HGF) has a relevant role in the tissue repair. MicroRNA (miR)-26a is an endogenous modulator of HGF. The role of miR-26a in the kidney repair process was evaluated in Wistar rats submitted to an acute kidney injury model of rhabdomyolysis induced by glycerol (6 mL/kg).
View Article and Find Full Text PDF