Publications by authors named "Milena Salerno"

Positron emission tomography (PET) imaging of Aβ plaques, is recognized as a tool for the diagnosis of Alzheimer's disease. As a contribution to the development of new strategies for early diagnosis of the disease, using PET medical imaging technique, a new copper complex, the [Cu(TE1PA-ONO)] was synthesized in ten steps. The key step of our strategy is the coupling of a monopicolinate-N-alkylated cyclam-based ligand with a moiety capable of recognizing Aβ plaques via a successful and challenging Buchwald-Hartwig coupling reaction.

View Article and Find Full Text PDF

Stereo- and regioisomers of a series of N,N-bis(alkanol)amine aryl ester derivatives have been prepared and studied as multidrug resistance (MDR) modulators. The new compounds contain a 2-(methyl)propyl chain combined with a 3-, 5- or 7-methylenes long chain and carry different aromatic ester portions. Thus, these compounds have a methyl group on the 3-methylenes chain and represent branched homologues of previously studied derivatives.

View Article and Find Full Text PDF

In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin-resistant erythroleukemia K562 cells (K562/DOX).

View Article and Find Full Text PDF

A series of 1,4-substituted arylalkyl piperazine derivatives were synthesized and studied with the aim to obtain potent P-gp-dependent multidrug-resistant (MDR) reversers. The new compounds were designed on the basis of the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity. All new compounds were active in the pirarubicin uptake assay on the doxorubicin-resistant erythroleukemia K562 cells (K562/DOX).

View Article and Find Full Text PDF

In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line.

View Article and Find Full Text PDF

In a continuing search for potent P-gp-dependent multidrug-resistant (MDR) reversers we synthesized and studied a new series of N-alkanol-N-cyclohexanol amine aryl esters characterized by the presence of two linkers with different flexibility: a polymethylene chain of variable length and a cyclohexylic scaffold, that gave origin to two geometrical isomers (cis and trans). The reversal activity of the new compounds was evaluated on the K562/DOX cell line by three tests: pirarubicin uptake modulation, doxorubicin cytotoxicity enhancement (reversal fold, RF) and inhibition of P-gp-mediated rhodamine-123 (Rhd 123) efflux tests. The chemical stability of their ester function was evaluated in the experimental conditions utilized (phosphate buffer solution (PBS), bovine serum and in the presence of K562/DOX cells) and in human plasma.

View Article and Find Full Text PDF

It has been proposed that the amyloid-β peptides (Aβ) cause the neuronal degeneration in the Alzheimer's disease brain. An imbalance between peptide production at the neuronal level and their elimination across the blood-brain-barrier (BBB) results in peptide accumulation inside the brain. The identification and functional characterization of the transport systems in the BBB with the capacity to transport Aβ is crucial for the understanding of Aβ peptide traffic from the brain to the blood.

View Article and Find Full Text PDF

In this paper, we propose a multi-parametric in vitro study of the cytotoxicity of gold nanoparticles (GNPs) on human endothelial cell (HUVEC). The cytotoxicity is evaluated by incubating cells with six different GNP types which have two different morphologies: spherical and flower-shaped, two sizes (∼15 and ∼50 nm diameter) and two surface chemistries (as prepared form and PEGylated form). Our results showed that by increasing the concentration of GNPs the cell viability decreases with a toxic concentration threshold of 10 pM for spherical GNPs and of 1 pM for flower-shaped GNPs.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on developing new N,N-bis(alkanol)amine aryl esters to combat P-glycoprotein (P-gp) related multidrug resistance (MDR).
  • The new compounds were tested on doxorubicin-resistant K562/DOX cells, showing promising activity in reversing MDR, particularly those with asymmetrical linkers.
  • Notable compounds 16 (GDE6) and 17 (GDE19) were identified for their potential to enhance doxorubicin's cytotoxic effects, indicating their potential as leads for new MDR treatments.
View Article and Find Full Text PDF

In an effort toward the visualization of β-amyloid plaques by in vivo imaging techniques, we have conjugated an optimized derivative of the Pittsburgh compound B (PiB), a well-established marker of Aβ plaques, to DO3A-monoamide that is capable of forming stable, noncharged complexes with different trivalent metal ions including Gd(3+) for MRI and (111)In(3+) for SPECT applications. Proton relaxivity measurements evidenced binding of Gd(DO3A-PiB) to the amyloid peptide Aβ1-40 and to human serum albumin, resulting in a two- and four-fold relaxivity increase, respectively. Ex vivo immunohistochemical studies showed that the DO3A-PiB complexes selectively target Aβ plaques on Alzheimer's disease human brain tissue.

View Article and Find Full Text PDF

As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure-activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis). The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay.

View Article and Find Full Text PDF

The molecular basis of Alzheimer's disease has not been clearly established, but disruption of brain metal ion homeostasis, particularly copper and zinc, might be closely involved in the pathogenesis of this disease and its characteristic β-amyloid neuropathological features. The use of complexes of copper with bis(thiosemicarbazones) ([Cu(btsc)]) has been proposed for the treatment of Alzheimer's disease. Their mode of action could involve modulation of the concentration of copper or zinc, and it has been suggested that the compounds can modulate the production of β-amyloid peptide at the neuron level.

View Article and Find Full Text PDF

Conformational modulation of the aryl portion of a set of N,N-bis(cyclohexanol)amine aryl esters (1a-d) that are potent Pgp-dependent MDR inhibitors has been performed. Toward this end the trans-3-(3,4,5-trimethoxyphenyl)acrylic acid present in set 1 was substituted with 3-(3,4,5-trimethoxyphenyl)propanoic and 3-(3,4,5-trimethoxyphenyl)propiolic moieties to give sets 2 and 3, respectively. While the introduction of 3-(3,4,5-trimethoxyphenyl)propanoic moiety resulted in a definite drop in potency and efficacy, esterification with 3-(3,4,5-trimethoxyphenyl)propiolic acid gave four isomers (3a-d) that maintain high potency and possess optimal efficacy.

View Article and Find Full Text PDF

As a continuation of a previous research, a series of N,N-bis(alkanol)amine aryl esters, as Pgp-dependent MDR inhibitors, was designed and synthesized. The aromatic ester portions are suitably modulated, and new aryl rings (Ar(1) and Ar(2)) were combined with trans-3-(3,4,5-trimethoxyphenyl)vinyl, 3,4,5-trimethoxybenzyl and anthracene moieties that were present in the most potent previously studied compounds. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly form of dementia in the elderly. The development of molecules able to detect biomarkers characteristic of AD is critical to its understanding and treatment. However, such molecules must be able to pass blood-brain barrier (BBB) which is a major impediment to the entry of many therapeutic drugs into the brain.

View Article and Find Full Text PDF

We have cloned and expressed calmodulin (CaM) from Trypanosoma cruzi, for the first time, to obtain large amounts of protein. CaM is a very well conserved protein throughout evolution, sharing 100% amino acid sequence identity between different vertebrates and 99% between trypanosomatids. However, there is 89% amino acid sequence identity between T.

View Article and Find Full Text PDF

A new series of Pgp-dependent MDR inhibitors having a N,N-bis(cyclohexanol)amine scaffold was designed on the basis of the frozen analogue approach. The scaffold chosen gives origin to different geometrical isomers. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells in the pirarubicin uptake assay.

View Article and Find Full Text PDF

Resistance to cisplatin [cis-diamminedichloroplatinum(II), CDDP] chemotherapy is a major problem in the clinic. Understanding the molecular basis of the intracellular accumulation of CDDP and other platinum-based anticancer drugs is of importance in delineating the mechanism of resistance to these clinically important therapies. Different molecular mechanisms may coexist, but defective uptake of CDDP is one of the most consistently identified characteristics of cells selected for CDDP resistance.

View Article and Find Full Text PDF

Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically active in acute promyelocytic leukemias.

View Article and Find Full Text PDF

The composition comprising the highly water-soluble drug meglumine antimoniate (MA) and beta-cyclodextrin (beta-CD) was shown previously to enhance the absorption of Sb by oral route and render MA orally active in a murine model of cutaneous leishmaniasis. This unexpected behaviour was attributed, in part, to the fact that the heating of equimolar mixture of MA and beta-CD (first step of preparation of MA/beta-CD composition) induced the depolymerization of MA from high-molecular weight Sb complexes into 1:1 Sb-meglumine complex, resulting in an enhanced oral bioavailability of Sb. In the present work, we demonstrate that the heated MA+beta-CD mixture still produced significantly lower serum Sb levels when compared to the MA/beta-CD composition, indicating that the freeze-drying process (second step of preparation of MA/beta-CD composition) is required for achieving a high absorption of Sb by oral route.

View Article and Find Full Text PDF

The multidrug resistance-associated protein transporter ABCC1 (MRP1) is an integral plasma membrane protein involved in the multidrug resistance phenotype. It actively expels a number of cytotoxic molecules from cells. To gain insight into the modulation of the functional properties of this integral membrane protein by cholesterol, a main component of the lipid bilayer, we used multidrug-resistant GLC4/ADR cells, which overexpress MRP1.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by the presence of beta-amyloid fibril formation. The inhibition of this peptide accumulation may be a prevention method for Alzheimer's disease. Several classes of molecules have been reported to inhibit beta-amyloid fibril formation and among them carbazoles.

View Article and Find Full Text PDF

A new series of P-glycoprotein (Pgp)-dependent multidrug resistance (MDR) inhibitors having a N,N-bis(cyclohexanol)amine scaffold have been designed, following the frozen analog approach. With respect to the parent flexible molecules, the new compounds show improved potency and efficacy. Among them, compound 1d, on anthracycline-resistant erythroleukemia K562 cells, is able to completely reverse Pgp-dependent MDR at low nanomolar concentration.

View Article and Find Full Text PDF

cis-Diamminedichloroplatinum(II) (CDDP) is an important chemotherapeutic agent used in the treatment of a wide variety of solid tumors. We have recently shown that aquated forms of cisplatin (aqua-Pt) rapidly accumulate in K562 and GLC4 cultured cells, in comparison to CDDP. Thus, when cells are incubated with aquated forms of cisplatin a gradient of concentration is observed after a short time, approximately 40 min, with an intracellular concentration of aqua-Pt of 20-30 times higher than that of extracellular aqua-Pt.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by the presence of amyloid deposition. Thioflavin T (ThT) has been one of the molecules of choice to attempt the detection of these amyloid deposits. However, it has been reported that ThT was unable to cross blood-brain barrier (BBB).

View Article and Find Full Text PDF