Publications by authors named "Milena Rizzardini"

Defects in energy metabolism are potential pathogenic mechanisms in amyotrophic lateral sclerosis (ALS), a rapidly fatal disease with no cure. The mechanisms through which this occurs remain elusive and their understanding may prove therapeutically useful. We used metabolomics and stable isotope tracers to examine metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease that affects motor neurons. The recruitment of autophagy (macroautophagy) and mitochondrial dysfunction are documented in amyotrophic lateral sclerosis patients and experimental models expressing mutant forms of Cu, Zn superoxide dismutase (SOD1) protein, but their impact in the disease remains unclear. Hypoxia is a stress closely related to the disease in patients and mutant SOD1 mice; in individual cells, hypoxia activates autophagy and regulates mitochondrial metabolism as fundamental adaptive mechanisms.

View Article and Find Full Text PDF

Impairment of mitochondrial function might contribute to oxidative stress associated with neurodegeneration in amyotrophic lateral sclerosis (ALS). Glutamate levels in tissues of ALS patients are sometimes altered. In neurons, mitochondrial metabolism of exogenous glutamine is mainly responsible for the net synthesis of glutamate, which is a neurotransmitter, but it is also necessary for the synthesis of glutathione, the main endogenous antioxidant.

View Article and Find Full Text PDF

Motor neuron degeneration in amyotrophic lateral sclerosis involves oxidative damage. Glutathione (GSH) is critical as an antioxidant and a redox modulator. We used a motor neuronal cell line (NSC-34) to investigate whether wild-type and familial amyotrophic lateral sclerosis-linked G93A mutant Cu,Zn superoxide dismutase (wt/G93ASOD1) modified the GSH pool and glutamate cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis.

View Article and Find Full Text PDF

Mitochondrial damage induced by superoxide dismutase (SOD1) mutants has been proposed to have a causative role in the selective degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). In order to investigate the basis of the tissue specificity of mutant SOD1 we compared the effect of the continuous expression of wild-type or mutant (G93A) human SOD1 on mitochondrial morphology in the NSC-34 motoneuronal-like, the N18TG2 neuroblastoma and the non-neuronal Madin-Darby Canine Kidney (MDCK) cell lines. Morphological alterations of mitochondria were observed in NSC-34 expressing the G93A mutant (NSC-G93A) but not the wild-type SOD1, whereas a ten-fold greater level of total expression of the mutant had no effect on mitochondria of non-motoneuronal cell lines.

View Article and Find Full Text PDF

G93A Cu/Zn superoxide dismutase (SOD1), a human mutant SOD1 associated with familial amyotrophic lateral sclerosis, increased the toxicity of the mitochondrial toxin rotenone in the NSC-34 motoneuronal cell line. G93ASOD1 cells died more than untransfected and wild-type SOD1 cells after 6 and 24h exposure to 12.5 microM rotenone.

View Article and Find Full Text PDF

The motor neuron-like cell line NSC-34 has become a widely used in vitro model for motor neuron biology and pathology. We established a tetracycline-regulated gene expression system in this cell line by stably transfecting pTet-Off, which codifies for the tetracycline transactivator, the regulatory protein tTA. The monoclonal cell lines (NSC-34-tTA) were evaluated for the presence of functional tTA after transient transfection with pBI-EGFP, analyzing the expression of the reporter gene enhanced green fluorescent protein.

View Article and Find Full Text PDF

Mutations of Cu/Zn superoxide dismutase (SOD1) are found in patients with familial amyotrophic lateral sclerosis (FALS). A cellular model of FALS was developed by stably transfecting the motor neuron-like cell line NSC-34 with human wild type (wt) or mutant (G93A) SOD1. Expression levels of G93ASOD1 were close to those seen in the human disease.

View Article and Find Full Text PDF

Background/aims: The role of oxidative stress in diclofenac hepatotoxicity is still not clear. This study examined whether the drug induced heme oxygenase-1 (HO-1), a stress protein.

Methods: HO-1 mRNA and HO activity were measured in mouse liver and in rat hepatocytes after treatment with diclofenac parallel to release of serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) as a marker of hepatic damage.

View Article and Find Full Text PDF