To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin-silk fibroin (GelMA-SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells.
View Article and Find Full Text PDFPathophysiologic inflammation, e.g., from HSV-1 viral infection, can cause tissue destruction resulting in ulceration, perforation, and ultimately blindness.
View Article and Find Full Text PDFResistance to the chemotherapeutic agents in the clinical management of cancer remains a significant challenge, and the mechanical environment of cancer cells is one of the major determinants of this. Stiffening of the environment is usually associated with increased chemoresistance of cancer cells, although this process depends on the type of cancer. Breast cancer is the most frequently diagnosed cancer, and more than half a million people die from it each year worldwide.
View Article and Find Full Text PDFMyocarditis (MC) is an inflammatory disease of the myocardium that can cause sudden death in the acute phase, and dilated cardiomyopathy (DCM) with chronic heart failure as its major long-term outcome. However, the molecular mechanisms beyond the acute MC phase remain poorly understood. The ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic stress/stretch-inducible protein, which can modulate cardiac stress response during various forms of pathological stimuli; however, its involvement in post-MC cardiac remodeling leading to DCM is not known.
View Article and Find Full Text PDFUV photofunctionalization of Zirconia-based materials for abutment fabrication is a promising approach that might influence the formation of a sound peri-implant seal, thus promoting long-term soft and hard tissue implant integration. This study aimed to evaluate the effect of UV treatment of test specimens made by two different ZnO-based ceramic materials on the hydrophilicity, cell cytotoxicity, and proliferation of human gingival fibroblasts (HGFs). Two Zirconia-based materials, high-translucent and ultra-translucent multi-layered Zirconia (Katana, Kuraray Noritake, Japan), were used to prepare a total of 40 specimens distributed in two equally sized groups based on the material ( = 20).
View Article and Find Full Text PDFBackground Aims: To facilitate artificial bone construct integration into a patient's body, scaffolds are enriched with different biologically active molecules. Among various scaffold decoration techniques, coating surfaces with cell-derived extracellular matrix (ECM) is a rapidly growing field of research. In this study, for the first time, this technology was applied using primary dental pulp stem cells (DPSCs) and tested for use in artificial bone tissue construction.
View Article and Find Full Text PDFObjectives: Millions of people worldwide are affected by diseases or injuries which lead to bone/tooth loss and defects. While such clinical situations are daily practice in most of the hospitals, the widely used treatment methods still have disadvantages. Therefore, this field of medicine is actively searching new tissue regeneration techniques, one of which could be stem cell secretome.
View Article and Find Full Text PDFThe mesenchymal stem cell (MSC) secretome has been considered an innovative therapeutic biological approach, able to modulate cellular crosstalk and functionality for enhanced tissue repair and regeneration. This study aims to evaluate the functionality of the secretome isolated from periosteum-derived MSCs, from either basal or osteogenic-induced conditions, in the healing of a critical size calvarial bone defect in the rabbit model. A bioceramic xenograft was used as the vehicle for secretome delivery, and the biological response to the established biocomposite system was assessed by clinical, histological, histomorphometric, and microtomographic analysis.
View Article and Find Full Text PDFEffective cell number monitoring throughout the three-dimensional (3D) scaffold is a key factor in tissue engineering. There are many methods developed to evaluate cell number in 2D environments; however, they often encounter limitations in 3D. Therefore, there is a demand for reliable methods to measure cell proliferation in 3D surroundings.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are widely used in the fields of cell therapy and tissue engineering, due to their wide spectrum of differentiation potential, immunomodulation function and ongoing oxidative stress (OS) reduction. Nevertheless, OS impact is often overlooked in these research fields. It is not only responsible for the induction and development of many ailments, e.
View Article and Find Full Text PDFBackground: Curcumin, a natural polyphenolic substance, has been known for more than two millennia as having strong anti-inflammatory activity towards multiple ailments, including arthritis. The main drawback of curcumin is its poor solubility in water, which leads to low intestinal absorption and minimal bioavailability. In this study, we aimed to compare the anti-arthritic in vivo effect of different curcumin preparations - basic curcumin extract, micellar curcumin, curcumin mixture with piperine, and microencapsulated curcumin.
View Article and Find Full Text PDFThis study aimed to create novel bioceramic coatings on a titanium alloy and evaluate their surface properties in comparison with conventional prosthetic materials. The highly polished titanium alloy Ti6Al4V (Ti) was used as a substrate for yttria-stabilized zirconium oxide (3YSZ) and lithium disilicate (LS2) coatings. They were generated using sol-gel strategies.
View Article and Find Full Text PDF3D printing of polylactic acid (PLA) and hydroxyapatite (HA) or bioglass (BG) bioceramics composites is the most promising technique for artificial bone construction. However, HA and BG have different chemical composition as well as different bone regeneration inducing mechanisms. Thus, it is important to compare differentiation processes induced by 3D printed PLA + HA and PLA + BG scaffolds in order to evaluate the strongest osteoconductive and osteoinductive properties possessing bioceramics.
View Article and Find Full Text PDFTopography of the scaffold is one of the most important factors defining the quality of artificial bone. However, the production of precise micro- and nano-structured scaffolds, which is known to enhance osteogenic differentiation, is expensive and time-consuming. Meanwhile, little is known about macro-patterns (larger than cell diameter) effect on cell fate, while this kind of structures would significantly facilitate the manufacturing of artificial skeleton.
View Article and Find Full Text PDFA number of quinones have been shown to be efficient anticancer agents. However, some mechanisms of their action, in particular cell signaling are not well understood. The aim of this study was to partly fill this gap by characterizing the mode of cytotoxicity of 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) in malignant mouse hepatoma cells (MH-22A) with regard to the expression and activation of main molecules in MAPK cell signaling pathway.
View Article and Find Full Text PDFXenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes.
View Article and Find Full Text PDF