We show that the dynamics of high-intensity laser pulses undergoing self-focused propagation in a nonlinear medium can be understood in terms of the topological constraints imposed by the formation and evolution of spatiotemporal optical vortices (STOVs). STOVs are born from pointlike phase defects on the sides of the pulse nucleated by spatiotemporal phase shear. These defects grow into closed loops of spatiotemporal vorticity that initially exclude the pulse propagation axis, but then reconnect to form a pair of toroidal vortex rings that wrap around it.
View Article and Find Full Text PDFWe show that multi-GeV laser wakefield electron accelerators in meter-scale, low density hydrodynamic plasma waveguides operate in a new nonlinear propagation regime dominated by sustained beating of lowest order modes of the ponderomotively modified channel; this occurs whether or not the injected pulse is linearly matched to the guide. For a continuously doped gas jet, this emergent mode beating effect leads to axially modulated enhancement of ionization injection and a multi-GeV energy spectrum of multiple quasimonoenergetic peaks; the same process in a locally doped jet produces single multi-GeV peaks with <10% energy spread. A three-stage model of drive laser pulse evolution and ionization injection characterizes the beating effect and explains our experimental results.
View Article and Find Full Text PDFWe demonstrate loss-free generation of 3 mJ, 1 kHz, few-cycle (5 fs at 750 nm central wavelength) double pulses with a pulse peak separation from 10 to 100 fs, using a helium-filled hollow core fiber (HCF) and chirped mirror compressor. Crucial to our scheme are simulation-based modifications to the spectral phase and amplitude of the oscillator seed pulse to eliminate the deleterious effects of self-focusing and nonlinear phase pickup in the chirped pulse amplifier. The shortest pulse separations are enabled by tunable nonlinear pulse splitting in the HCF compressor.
View Article and Find Full Text PDFBessel beams generated with non-ideal axicons are affected by aberrations. We introduce a method to retrieve the complex amplitude of a Bessel beam from intensity measurements alone, and then use this information to correct the wavefront and intensity profile using a deformable mirror.
View Article and Find Full Text PDFPhys Rev Lett
November 2021
We identify a class of modal solutions for spatiotemporal optical vortex (STOV) electromagnetic pulses propagating in dispersive media with orbital angular momentum (OAM) orthogonal to propagation. We find that symmetric STOVs in vacuum can carry half-integer intrinsic OAM; for general asymmetric STOVs in a dispersive medium, the OAM is quantized in integer multiples of a parameter that depends on the STOV symmetry and the group velocity dispersion. Our results suggest that STOVs propagating in dispersive media are accompanied by a polaritonlike quasiparticle.
View Article and Find Full Text PDFWe investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 μm-wavelength Yb:YAG laser at repetition rates up to =1. Interferograms of the wake generated show that while pulses in a train of repetition rate =0.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.46, 1013 (2021)OPLEDP0146-959210.
View Article and Find Full Text PDFWe present a technique for the single-shot measurement of the spatiotemporal (1D +) amplitude and phase of an ultrashort laser pulse. The method, transient grating single-shot supercontinuum spectral interferometry (TG-SSSI), is demonstrated by the space-time imaging of short pulses carrying spatiotemporal optical vortices. TG-SSSI is well suited for characterizing ultrashort laser pulses that contain singularities associated with spin/orbital angular momentum or polarization.
View Article and Find Full Text PDFRecently proposed universality of the nonlinear response is put to the test and used to improve a previously designed model for xenon. Utilizing accurate measurements resolving the nonlinear polarization and ionization in time and space, we calibrate the scaling parameters of the model and demonstrate agreement with several experiments spanning the intensity range relevant for applications in nonlinear optics at near-infrared and mid-infrared wavelengths. Applications to other species including small molecules are discussed, suggesting a self-consistent way to calibrate light-matter interaction models.
View Article and Find Full Text PDFPhys Rev Lett
September 2020
Nonlinear self-guided propagation of intense long-wave infrared (LWIR) laser pulses is of significant recent interest, as it promises high power transmission without beam breakup and multifilamentation. Central to self-guiding is the mechanism for the arrest of self-focusing collapse. Here, we show that discrete avalanche sites centered on submicron aerosols can arrest self-focusing, providing a new mechanism for self-guided propagation of moderate intensity LWIR pulses in outdoor environments.
View Article and Find Full Text PDFWe present space and time resolved measurements of the air hydrodynamics induced by femtosecond laser pulse excitation of the air gap between two electrodes at high potential difference. We explore both plasma-based and plasma-free gap excitation. The former uses the plasma left in the wake of femtosecond filamentation, while the latter exploits air heating by multiple-pulse resonant excitation of quantum molecular wavepackets.
View Article and Find Full Text PDFWe demonstrate a new highly tunable technique for generating meter-scale low density plasma waveguides. Such guides can enable laser-driven electron acceleration to tens of GeV in a single stage. Plasma waveguides are imprinted in hydrogen gas by optical field ionization induced by two time-separated Bessel beam pulses: The first pulse, a J_{0} beam, generates the core of the waveguide, while the delayed second pulse, here a J_{8} or J_{16} beam, generates the waveguide cladding, enabling wide control of the guide's density, depth, and mode confinement.
View Article and Find Full Text PDFHigh intensity laser filamentation in air has recently demonstrated that, through plasma generation and its associated shockwave, fog can be cleared around the beam, leaving an optically transparent path to transmit light. However, for practical applications like free-space optical communication (FSO), channels of multi-centimeter diameters over kilometer ranges are required, which is extremely challenging for a plasma based method. Here we report a radically different approach, based on quantum control.
View Article and Find Full Text PDFWe have experimentally demonstrated a simplified method for performing single-shot supercontinuum spectral interferometry (SSSI) that does not require pre-characterization of the probe pulse. The method, originally proposed by D. T.
View Article and Find Full Text PDFIn a single shot, we measure the full propagation path, including the evolution to pulse collapse, of a high power femtosecond laser pulse propagating in air. Our technique enables examination of the effect of parameters that fluctuate on a shot-to-shot basis, such as pulse energy, pulse duration, and air turbulence-induced refractive index perturbations. We find that even in lab air over relatively short propagation distances, turbulence plays a significant role in determining the location of pulse collapse.
View Article and Find Full Text PDFStrong-field ionization is central to intense laser-matter interactions. However, standard ionization measurements have been limited to extremely low density gas samples, ignoring potential high density effects. Here, we measure strong-field ionization in atmospheric pressure range air, N_{2}, and Ar over 14 decades of absolute yield, using mid-IR picosecond avalanche multiplication of single electrons.
View Article and Find Full Text PDFThere has been growing interest both in studying high intensity ultrafast laser plasma interactions with adaptive control systems as well as using long wavelength driver beams. We demonstrate the coherent control of the dynamics of laser-wakefield acceleration driven by ultrashort (∼ 100 fs) mid-infrared (∼ 3.9 μm) laser pulses.
View Article and Find Full Text PDFRemote detection of a distant, shielded sample of radioactive material is an important goal, but it is made difficult by the finite spatial range of the decay products. Here, we present a proof-of-principle demonstration of a remote detection scheme using mid-infrared (mid-IR) (λ = 3.9 μm) laser-induced avalanche breakdown of air.
View Article and Find Full Text PDFWe measure the detailed spatiotemporal profiles of femtosecond laser pulses in the infrared wavelength range of λ=2.5-11 μm and the absolute nonlinear response of major air constituents (N, O, and Ar) over this range. The spatiotemporal measurements reveal wavelength-dependent pulse front tilt and temporal stretching in the infrared pulses.
View Article and Find Full Text PDFThe thermal density depression (or "density hole") produced by a high-repetition-rate femtosecond filament in air acts as a negative lens, altering the propagation of the filament. We demonstrate the effects of externally driven gas motion on these density holes and the resulting filament steering, and we derive an expression for the gas velocity that maximizes the effect. At gas velocities more than ∼3 times this value, the density hole is displaced from the filament, and it no longer affects filament propagation.
View Article and Find Full Text PDFWe present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order n_{e}(0)=1×10^{17}cm^{-3} and lowest-order modes of spot size W_{M}≈40μm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel.
View Article and Find Full Text PDFWe present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
View Article and Find Full Text PDFIn this erratum the funding section of Opt. Lett.42, 215 (2017)OPLEDP0146-959210.
View Article and Find Full Text PDF