The influence of three cultivars ('Carmen', 'Kordia' and 'Regina') grafted on six rootstocks (Mahaleb, 'Colt', 'Oblacinska', 'M × M 14', 'Gisela 5' and 'Gisela 6') on the phenolic profile of sweet cherry fruits was studied during a two-year period. All the individual phenolic compounds were detected using high-pressure liquid chromatography with diode-array detection coupled with mass spectrometry (HPLC-DAD-MSn). In all the examined samples, 54 compounds were identified and divided into five phenolic classes: anthocyanins (4 compounds), flavonols (7), flavanols (11), flavanones (4), and hydroxycinnamic acids (28).
View Article and Find Full Text PDFAcrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water.
View Article and Find Full Text PDFAmmonia is responsible for cerebral edema associated with acute liver failure, but the role of the vasogenic mechanism has been a matter of dispute. Here, we tested the hypothesis that ammonia induces changes in blood-brain barrier (BBB) permeability by a mechanism coupled to oxidative/nitrosative stress (ONS) evoked in the BBB-forming cerebral capillary endothelial cells. Treatment of a rat brain endothelial cell line with ammonia (5 mmol/L, 24 h) caused accumulation of ONS markers: reactive oxygen species, nitric oxide and peroxidation products of phospholipid-bound arachidonic acid, F2-isoprostanes.
View Article and Find Full Text PDFMethylmercury (MeHg) is an environmental neurotoxicant associated with aberrant central nervous system (CNS) functions. In this study, we examined the protective effect of a novel anti-inflammatory and cytoprotective nonapeptide, termed IIIM1, against MeHg-induced toxicity in cultured rat neonatal primary astrocytes. Astrocytes were pretreated for 66 h with 5 μg/ml IIIM1 (4.
View Article and Find Full Text PDFChronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model.
View Article and Find Full Text PDFBackground: Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress.
View Article and Find Full Text PDFOxidative stress results from an imbalance between production of reactive oxygen and nitrogen species (ROS and RNS, respectively) and endogenous antioxidant defense mechanisms. Increased generation of ROS/RNS is implicated in the pathogenesis of a variety of human diseases, including neurodegenerative disease, atherosclerosis, cancer, and aging. However, measuring oxidative stress in biological systems is complex and requires accurate quantification of either free radicals or damaged biomolecules.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo.
View Article and Find Full Text PDFExposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood.
View Article and Find Full Text PDFSelenoprotein P (Sepp1) is an important protein involved in selenium (Se) transport and homeostasis. Severe neurologic dysfunction develops in Sepp1 null mice (Sepp1(-/-)) fed a selenium-deficient diet. Sepp1(-/-) mice fed a selenium-deficient diet have extensive degeneration of the brainstem and thalamus, and even when supplemented with selenium exhibit subtle learning deficits and altered basal synaptic transmission and short-term plasticity in the CA1 region of the hippocampus.
View Article and Find Full Text PDFThe prostanoids, a naturally occurring subclass of eicosanoids, are lipid mediators generated through oxidative pathways from arachidonic acid. These cyclooxygenase metabolites, consisting of the prostaglandins (PG), prostacyclin and tromboxane, are released in response to a variety of physiological and pathological stimuli in almost all organs, including the brain. They are produced by various cell types and act upon targeted cells via specific G protein-coupled receptors.
View Article and Find Full Text PDFMethylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments.
View Article and Find Full Text PDFAmong several available antimalarial drugs, mefloquine has proven to be effective against drug-resistant Plasmodium falciparum and remains the drug of choice for both therapy and chemoprophylaxis. However, mefloquine is known to cause adverse neurological and/or psychiatric symptoms, which offset its therapeutic advantage. The exact mechanisms leading to the adverse neurological effects of mefloquine are poorly defined.
View Article and Find Full Text PDFγ-Glutamylcysteine (γ-GC) is an intermediate molecule of the glutathione (GSH) synthesis pathway. In the present study, we tested the hypothesis that γ-GC pretreatment in cultured astrocytes and neurons protects against hydrogen peroxide (H(2)O(2))-induced oxidative injury. We demonstrate that pretreatment with γ-GC increases the ratio of reduced:oxidized GSH levels in both neurons and astrocytes and increases total GSH levels in neurons.
View Article and Find Full Text PDFThe main objective of this study was to develop feasible, easy to apply models for early prediction of full flowering (FF) and maturing (MA) in apricot (Prunus armeniaca L.). Phenological data for 20 apricot cultivars grown in the Belgrade region were modeled against averages of daily temperature records over ten seasons for FF and eight seasons for MA.
View Article and Find Full Text PDFParkinson's disease (PD)-mimicking drugs and pesticides, and more recently PD-associated gene mutations, have been studied in cell cultures and mammalian models to decipher the molecular basis of PD. Thus far, a dozen of genes have been identified that are responsible for inherited PD. However they only account for about 8% of PD cases, most of the cases likely involving environmental contributions.
View Article and Find Full Text PDFThe increasing exposure to environmental neurotoxicants in the last decades caused serious health problems in the world population. Some of the neurotoxic agents are being used in agriculture and household such as insecticides and rodenticides and others are of natural origin like snake and scorpion venoms. Additional group of harmful substances is the chemical warfare agents including nerve and blistering agents that are known for their disastrous effects on neuronal tissues.
View Article and Find Full Text PDFMefloquine is an effective antimalarial that can cause adverse neurological events including headache, nausea, fatigue, insomnia, anxiety and depression. In this study, we examined the oxidative stress response in primary rat cortical neurons treated with mefloquine by quantifying oxidative stress markers glutathione (GSH) and F(2)-isoprostanes (F(2)-isoPs). Furthermore, we examined whether mefloquine induces synaptodendritic degeneration of primary rat cortical neurons.
View Article and Find Full Text PDFThe neurotoxicity of methylmercury (MeHg) is well documented in both humans and animals. MeHg causes acute and chronic damage to multiple organs, most profoundly the central nervous system (CNS). Microglial cells are derived from macrophage cell lineage, making up approximately 12% of cells in the CNS, yet their role in MeHg-induced neurotoxicity is not well defined.
View Article and Find Full Text PDFThe study of dendritic length and spine density has become a standard in the analysis of neuronal abnormalities since a considerable number of neurological diseases have their foundation in alterations in these structures. One of the best ways to study possible alterations in neuronal morphometry is the use of Golgi impregnation. Introduced more than a century ago, it is still the standard and state-of-the-art technique for visualization of neuronal architecture.
View Article and Find Full Text PDFWe showed previously in cultures of primary human adipocytes and preadipocytes that lipopolysaccharide and trans-10,cis-12-conjugated linoleic acid (10,12-CLA) activate the inflammatory signaling that promotes insulin resistance. Because our published data demonstrated that preadipocytes are the primary instigators of inflammatory signaling in lipopolysaccharide-treated cultures, we hypothesized that they played the same role in 10,12-CLA-mediated inflammation. To test this hypothesis, we employed four distinct models.
View Article and Find Full Text PDFManganese (Mn) is an essential trace metal; however, exposure to high Mn levels can result in neurodegenerative changes resembling Parkinson's disease (PD). Information on Mn's effects on endothelial cells of the blood-brain barrier (BBB) is lacking. Accordingly, we tested the hypothesis that BBB endothelial cells are a primary target for Mn-induced neurotoxicity.
View Article and Find Full Text PDFThe parkinsonian symptoms and increased Mn accumulation in dopaminergic (DAergic) neurons of the basal ganglia implicate impaired dopamine signaling in the neurotoxic effects of chronic manganese overexposure. Using blood oxygenation level-dependent (BOLD) pharmacological magnetic resonance imaging (phMRI), we mapped brain responses to acute amphetamine (AMPH; 3 mg/kg, ip), which stimulates midbrain DAergic systems, in male Sprague-Dawley rats following 6 weeks of chronic MnCl(2) (5 mg Mn/kg, one per week, iv) or saline treatment. Plasma Mn content, measured immediately following phMRI, was elevated twofold in Mn-treated animals (p < 0.
View Article and Find Full Text PDF