Publications by authors named "Milana Frenkel Morgenstern"

Gene fusions are nucleotide sequences formed due to errors in replication and transcription control. These errors, resulting from chromosomal translocation, transcriptional errors or trans-splicing, vary from cell to cell. The identification of fusions has become critical as key biomarkers for disease diagnosis and therapy in various cancers, significantly influencing modern medicine.

View Article and Find Full Text PDF
Article Synopsis
  • - The COVID-19 pandemic, caused by the virus SARS-CoV-2, has become a major health threat, especially when patients become severely ill and face breathing problems.
  • - Scientists are trying to understand how the virus makes people sick, discovering that it affects how our cells work, leading to strange changes in our genetic information called "chimeric transcripts."
  • - This study found 424 unique chimeric transcripts in patients with severe COVID-19, some of which might be linked to the immune system's response and inflammation, helping researchers learn more about why some cases are more serious than others.
View Article and Find Full Text PDF
Article Synopsis
  • Chimeric RNAs are special RNA pieces formed when two genes combine, and they can work differently than the original RNA.
  • They might help cells adapt to new challenges, especially in situations like cancer, where they may play a role in developing diseases and resist treatments.
  • Scientists are discovering that chimeric RNAs not only influence cancer but also have important functions in normal bodily processes, making them an exciting area for future research.
View Article and Find Full Text PDF

Viral infections can modulate the widespread alternations of cellular splicing, favouring viral replication within the host cells by overcoming host immune responses. However, how SARS-CoV-2 induces host cell differential splicing and affects the landscape of transcript alternation in severe COVID-19 infection remains elusive. Understanding the differential splicing and transcript alternations in severe COVID-19 infection may improve our molecular insights into the SARS-CoV-2 pathogenesis.

View Article and Find Full Text PDF

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N-methylation of guanosine at position 37 (mG37) on the 3'-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons.

View Article and Find Full Text PDF

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation.

View Article and Find Full Text PDF

Initial clinical trials and surveillance data have shown that the most commonly administered BNT162b2 COVID-19 mRNA vaccine is effective and safe. However, several cases of mRNA vaccine-induced mild to moderate adverse events were recently reported. Here, we report a rare case of myositis after injection of the first dose of BNT162b2 COVID-19 mRNA vaccine into the left deltoid muscle of a 34-year-old, previously healthy woman who presented progressive proximal muscle weakness, progressive dysphagia, and dyspnea with respiratory failure.

View Article and Find Full Text PDF

Fusions of two different genes could lead to the production of chimeric RNAs, which could be translated into novel fusion (or chimeric) proteins. Fusion proteins often act as oncoproteins and drive cancer development, particularly in leukemia and lymphomas. Fusion proteins modify the existing protein-protein interaction (PPI) networks, which could eliminate some PPIs by removing protein domains in such fusions.

View Article and Find Full Text PDF

In cancers and other complex diseases, the fusion of two genes can lead to the production of chimeric RNAs, which are associated with disease development. Several recurrent chimeric RNAs are expressed in different cancers and are thus used for clinical cancer diagnosis. Rheumatoid arthritis (RA) is an immune-mediated joint disorder resulting in synovial inflammation and joint destruction.

View Article and Find Full Text PDF

The Bacillus Calmette-Guérin (BCG) vaccine affords indirect protection against COVID-19, which is presumably due to priming of the innate immune system. It was hypothesized that the live attenuated Varicella Zoster (LAVZ) vaccine, recommended for the elderly population, would also protect against COVID-19 infection. A retrospective population-based cross-sectional study was conducted using the Leumit Health Services (LHS) database.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls.

View Article and Find Full Text PDF

Fusion genes or chimeras typically comprise sequences from two different genes. The chimeric RNAs of such joined sequences often serve as cancer drivers. Identifying such driver fusions in a given cancer or complex disease is important for diagnosis and treatment.

View Article and Find Full Text PDF

Several recent studies have demonstrated that low plasma 25(OH) vitamin D levels are associated with the risk of COVID-19 infection. The primary source of vitamin D production in humans is environmental UV radiation. In many viral respiratory diseases, peak infection rates are observed during winter due to reduced UV exposure and low temperatures.

View Article and Find Full Text PDF

Chimeric RNAs are generated by the fusion of the exons or introns of two genes. The generation of chimeric RNAs is important for the functional expansion of cells. Here, we describe the functional implications of chimeric RNAs for generating phenotypic plasticity from an evolutionary perspective.

View Article and Find Full Text PDF

Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis.

View Article and Find Full Text PDF

Musculoskeletal research has been enriched in the past ten years with a great wealth of new discoveries arising from genome wide association studies (GWAS). In addition to the novel factors identified by GWAS, the advent of whole-genome and whole-exome sequencing efforts in family based studies has also identified new genes and pathways. However, the function and the mechanisms by which such genes influence clinical traits remain largely unknown.

View Article and Find Full Text PDF

Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells.

View Article and Find Full Text PDF

Here, we introduce a novel 'evolution of protein domains' (EvoProDom) model for describing the evolution of proteins based on the 'mix and merge' of protein domains. We assembled and integrated genomic and proteomic data comprising protein domain content and orthologous proteins from 109 organisms. In EvoProDom, we characterized evolutionary events, particularly, translocations, as reciprocal exchanges of protein domains between orthologous proteins in different organisms.

View Article and Find Full Text PDF

The recently emerged SARS-CoV-2 virus is responsible for the ongoing COVID-19 pandemic that has rapidly developed into a global public health threat. Patients severely affected with COVID-19 present distinct clinical features, including acute respiratory disorder, neutrophilia, cytokine storm, and sepsis. In addition, multiple pro-inflammatory cytokines are found in the plasma of such patients.

View Article and Find Full Text PDF

Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses.

View Article and Find Full Text PDF

The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them.

View Article and Find Full Text PDF

Acetylsalicylic acid (aspirin) is commonly used for primary and secondary prevention of cardiovascular diseases. Aspirin use is associated with better outcomes among COVID-19 positive patients. We hypothesized that the aspirin use for primary cardiovascular disease prevention might have a protective effect on COVID-19 susceptibility and disease duration.

View Article and Find Full Text PDF

The recent outbreak of COVID-19 has generated an enormous amount of Big Data. To date, the COVID-19 Open Research Dataset (CORD-19), lists ∼130,000 articles from the WHO COVID-19 database, PubMed Central, medRxiv, and bioRxiv, as collected by Semantic Scholar. According to LitCovid (11 August 2020), ∼40,300 COVID19-related articles are currently listed in PubMed.

View Article and Find Full Text PDF