Cysteine and glutathione are able to reduce Cu(ii) coordinated to the peptide amyloidβ, and shuttle the resulting Cu(i) to partially replace Zn(ii) in the protein Zn-metallothionein-3. The released Zn(ii) in turn binds to amyloid-β. Thus cysteine and glutathione are modulators of Cu/Zn-distribution between metallothionein-3 and amyloid-β.
View Article and Find Full Text PDFMetallothionein-3 (MT-3), a member of the mammalian metallothionein (MT) family, is mainly expressed in the central nervous system (CNS). MT-3 possesses a unique neuronal growth inhibitory activity, and the levels of this intra- and extracellularly occurring metalloprotein are markedly diminished in the brain of patients affected by a number of metal-linked neurodegenerative disorders, including Alzheimer's disease (AD). In these pathologies, the redox cycling of copper, accompanied by the production of reactive oxygen species (ROS), plays a key role in the neuronal toxicity.
View Article and Find Full Text PDFThe group I alkali metal ions Na(+) and K(+) are ubiquitous components of biological fluids that surround biological macromolecules. They play important roles other than being nonspecific ionic buffering agents or mediators of solute exchange and transport. Molecular evolution and regulated high intracellular and extracellular M(+) concentrations led to incorporation of selective Na(+) and K(+) binding sites into enzymes to stabilize catalytic intermediates or to provide optimal positioning of substrates.
View Article and Find Full Text PDFMetallothioneins (MTs) are low-molecular-mass cysteine-rich proteins with the ability to bind mono- and divalent metal ions with the electron configuration d ( 10 ) in form of metal-thiolate clusters. MTs are thought, among others, to play a role in the homeostasis of essential Zn(II) and Cu(I) ions. Besides these metal ions also Cd(II) can be bound to certain MTs in vivo, giving rise to the perception that another physiological role of MTs is in the detoxification of heavy metal ions.
View Article and Find Full Text PDFAmong the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation.
View Article and Find Full Text PDFSilencing prion: Copper-catalyzed transformations of prion protein (PrP) lead to the production of reactive oxygen species (ROS), PrP oxidation, and cleavage and aggregation in transmissible spongiphorm encephalopathies. Zn(7) MT-3 efficiently targets Cu(II) bound in different coordination modes to PrP-Cu(II) . By an unusual redox-dependent metal-swap reaction, MT-3 modulates the catalytic redox properties of PrP-Cu(II) .
View Article and Find Full Text PDFMetal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloid-β peptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction.
View Article and Find Full Text PDFSince the seminal discoveries of Bert Vallee regarding zinc and metallothioneins (MTs) more than 50 years ago, thousands of studies have been published concerning this fascinating story. One of the most active areas of research is the involvement of these proteins in the inflammatory response in general, and in neuroinflammation in particular. We describe the general aspects of the inflammatory response, highlighting the essential role of the major cytokine interleukin-6, and review briefly the expression and function of MTs in the central nervous system in the context of neuroinflammation.
View Article and Find Full Text PDFMetallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators.
View Article and Find Full Text PDFFree Radic Biol Med
June 2011
The aggregation of α-synuclein (α-Syn), the major component of intracellular Lewy body inclusions in dopaminergic neurons of the substantia nigra, plays a critical role in the etiology of Parkinson disease (PD). Long-term effects of redox-active transition metals (Cu, Fe) and oxidative chemical imbalance underlie the disease progression and neuronal death. In this work, we provide evidence that a brain metalloprotein, Zn₇-metallothionein-3 (Zn₇MT-3), possesses a dynamic role in controlling aberrant protein-copper interactions in PD.
View Article and Find Full Text PDFThe reactive oxygen species H₂O₂ promotes the Zn₇-metallothionein-3 induced Aβ(40) aggregation of fibrillar type structures via slow cysteine oxidation and Zn(2+) release, whereas amorphous aggregates are formed by addition of Zn(2+) to Aβ(40).
View Article and Find Full Text PDFMost crustacean metallothioneins (MTs) contain 18 Cys residues and bind six divalent metal ions. The copper-specific CuMT-2 (MTC) of the blue crab Callinectes sapidus with 21 Cys residues, of which six are organized in two uncommon Cys-Cys-Cys sequences, represents an exception. However, its metal-binding properties are unknown.
View Article and Find Full Text PDFTraumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice.
View Article and Find Full Text PDFThe reaction of metallothionein-2 (MT-2) with the organometallic antitumour compound [Ru(η(6)-p-cymene)Cl(2)(pta)], RAPTA-C, was investigated using ESI MS and ICP AES. The studies were performed in comparison to cisplatin and significant differences in the binding of the two complexes were observed. RAPTA-C forms monoadducts with MT-2, at variance with cisplatin, that has been observed to form up to four adducts.
View Article and Find Full Text PDFMammalian metallothioneins ([Formula: see text]) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd(3)-thiolate cluster containing beta-domain of mouse beta-MT-1 and rat beta-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of NH-Sgamma hydrogen bonds in beta-MT-2, features likely responsible for the increased stability of the Cd(3)-thiolate cluster and the enfolding protein domain.
View Article and Find Full Text PDFJ Biol Inorg Chem
September 2009
Human metallothioneins, small cysteine- and metal-rich proteins, play an important role in the acquired resistance to platinum-based anticancer drugs. These proteins contain a M(II)4(CysS)11 cluster and a M(II)3(CysS)9 cluster localized in the alpha-domain and the beta-domain, respectively. The noninducible isoform metallothionein-3 (Zn7MT-3) is mainly expressed in the brain, but was found overexpressed in a number of cancer tissues.
View Article and Find Full Text PDFHuman metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain, where it plays an important role in the homeostasis of the essential metal ions Cu(+) and Zn(2+). Like other mammalian metallothioneins (MT-1 and -2), the protein contains a M(II)(3)(CysS)(9) and a M(II)(4)(CysS)(11) cluster localized in two independent protein domains linked by a flexible hinge region. However, there is a substantially increased number of acidic residues in MT-3 (11 residues) compared with MT-2 (four residues) which may act as binding ligands for additional metal ions.
View Article and Find Full Text PDFHuman metallothioneins (MTs), a family of cysteine- and metal-rich metalloproteins, play an important role in the acquired resistance to platinum drugs. MTs occur in the cytosol and the nucleus of the cells and sequester platinum drugs through interaction with their zinc-thiolate clusters. Herein, we investigate the ability of human Zn 7MT-2 to form DNA-Pt-MT cross-links using the cisplatin- and transplatin-modified plasmid DNA pSP73.
View Article and Find Full Text PDFAberrant interactions of copper and zinc ions with the amyloid-beta peptide (Abeta) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Abeta and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Abeta are associated with copper binding. Metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD.
View Article and Find Full Text PDFIntrinsic and acquired resistance are major drawbacks of platinum-based cancer therapy. The protein superfamily of cysteine- and ZnII-rich proteins, metallothioneins (MT), efficiently inactivate these antitumor drugs because of the strong reactivity of platinum compounds with S-donor molecules. In this study the reactions of human Zn7MT-2 with twelve cis/trans-[Pt(N-donor)2Cl2] compounds and [Pt(dien)Cl]Cl, including new generation drugs, were investigated and the products characterized.
View Article and Find Full Text PDFS-Transnitrosation is an important bioregulatory process whereby NO(+) equivalents are transferred between S-nitrosothiols and Cys of target proteins. This reaction proceeds through a common intermediate R-S-N(O(-))-S-R' and it has been proposed that products different from S-nitrosothiols may be formed in protein cavities. Recently, we have reported on the formation of such a product, an N-thiosulfoximide, at the active site of the Cys hydrolase dimethylargininase-1 (DDAH-1) upon reaction with S-nitroso-l-homocysteine (HcyNO).
View Article and Find Full Text PDFDysregulation of copper and zinc homeostasis in the brain plays a critical role in Alzheimer disease (AD). Copper binding to amyloid-beta peptide (Abeta) is linked with the neurotoxicity of Abeta and free radical damage. Metallothionein-3 (MT-3) is a small cysteine- and metal-rich protein expressed in the brain and found down-regulated in AD.
View Article and Find Full Text PDFHuman S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+.
View Article and Find Full Text PDFDimethylarginine dimethylaminohydrolase (DDAH) is involved in the regulation of nitric oxide synthase (NOS) by metabolizing the free endogenous arginine derivatives N(omega)-methyl-L-arginine (MMA) and N(omega),N(omega)-dimethyl-L-arginine (ADMA), which are competitive inhibitors of NOS. Here, we present high-resolution crystal structures of DDAH isoform 1 (DDAH-1) isolated from bovine brain in complex with different inhibitors, including S-nitroso-L-homocysteine and Zn2+, a regulator of this mammalian enzyme. The structure of DDAH-1 consists of a propeller-like fold similar to other arginine-modifying enzymes and a flexible loop, which adopts different conformations and acts as a lid at the entrance of the active site.
View Article and Find Full Text PDFMammalian metallothionein-4 (MT-4) was found to be specifically expressed in stratified squamous epithelia where it plays an essential but poorly defined role in regulating zinc or copper metabolism. Here we report on the organization, stability, and the pathway of metal-thiolate cluster assembly in MT-4 reconstituted with Cd(2+) and Co(2+) ions. Both the (113)Cd NMR studies of (113)Cd(7)MT-4 and the spectroscopic characterization of Co(7)MT-4 showed that, similar to the classical MT-1 and MT-2 proteins, metal ions are organized in two independent Cd(4)Cys(11) and Cd(3)Cys(9) clusters with each metal ion tetrahedrally coordinated by terminal and bridging cysteine ligands.
View Article and Find Full Text PDF