Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality.
View Article and Find Full Text PDFRationale: While high-throughput proteomic methods have been widely applied to monoclonal antibodies and human immunoglobulin gamma (IgG) samples, less information is available on porcine IgG. As pigs are considered one of the most suitable species for xenotransplantation, it is important to characterize IgG amino acid sequences and glycosylation profiles, which is the focus of this study.
Methods: Three different purified porcine IgG samples, including wild-type and knockout species, were digested with trypsin and enriched for glycopeptides.
Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs).
View Article and Find Full Text PDF