Publications by authors named "Milan Sak-Bosnar"

Microchip electrophoresis (ME) was applied for the separation of two physiologically important imidazole dipeptides-carnosine and anserine. The capacitively coupled contactless conductivity detector (CD) was employed for quantification of both dipeptides after separation in a new home-built ME unit. The separation parameters were optimized as follows to enable quantitative, baseline separation of both dipeptides: injection time 16 s, injection voltage 900 V/cm, and separation voltage 377.

View Article and Find Full Text PDF

The aim of this research was to investigate the deposition of carnosine in broiler muscles by feeding treatments comprising -alanine, L-histidine, and magnesium oxide in various concentrations. The research was carried out on 120 Cobb 500 broilers divided into four groups. From weeks four to six, broilers were fed finisher mixtures as follows: P1, control group; P2, 0.

View Article and Find Full Text PDF

A home-made microchip electrophoresis (MCE) device was used to quantitate two biologically important histidine dipeptides, carnosine and anserine, using capacitively coupled contactless conductivity detection (CD), at pH 2.7. The CD detector exhibited a linear response to both carnosine and anserine in the range of 0-200μM for the individual dipeptides and in the range of 0-100μM for each dipeptide when both were present as a mixture.

View Article and Find Full Text PDF

A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in HO (55.

View Article and Find Full Text PDF

Here, we describe the development of a platinum redox sensor for the direct potentiometric quantification of starch in solution. The sensor measures the decrease in free triiodide ion after it complexes with starch to form a starch-triiodide complex. This decrease was, therefore, correlated with starch concentration, and the composition and stability of the potassium triiodide solution were optimised.

View Article and Find Full Text PDF

A novel method for the determination of diastase activity is reported. The method is based on a direct potentiometric measurement of triiodide ion that is released when a starch-triiodide complex is hydrolysed by honey diastase. The increase of free triiodide ion concentration in a sample is found to be directly proportional to the diastase activity of the sample.

View Article and Find Full Text PDF

A new rapid method for the determination of honey diastase activity using direct potentiometric principles has been proposed. A platinum redox sensor has been used to quantify the amount of free triiodide released from a starch triiodide complex after starch hydrolysis by honey diastase. The method was tested on honey samples with varying diastase activities.

View Article and Find Full Text PDF

A platinum redox sensor for the direct potentiometric determination of α-amylase concentration has been described. The sensor measured the amount of triiodide released from a starch-triiodide complex, which was correlated with the α-amylase activity after biocatalytic starch degradation. The composition and stability of the potassium triiodide solution was optimized.

View Article and Find Full Text PDF

A sensitive potentiometric surfactant sensor based on a highly lipophilic 1,3-didecyl-2-methyl-imidazolium cation and a tetraphenylborate (TPB) antagonist ion was used as the end-point detector in ion-pair potentiometric surfactant titrations using sodium TPB as a titrant. Several analytical and technical grade cationic and ethoxylated nonionic surfactants (EONS) and mixtures of both were potentiometrically titrated. The sensor showed satisfactory analytical performances within a pH range of 3-10 and exhibited satisfactory selectivity for all CS and EONS investigated.

View Article and Find Full Text PDF

A new sensitive potentiometric surfactant sensor was prepared based on a highly lipophilic 1,3-didecyl-2-methyl-imidazolium cation and a tetraphenylborate antagonist ion. This sensor was used as a sensing material and incorporated into the plasticized PVC-membrane. The sensor responded fast and showed a Nernstian response for investigated surfactant cations: cetylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB) and Hyamine with slope 59.

View Article and Find Full Text PDF

A liquid membrane nonionic surfactant sensitive electrode has been prepared, based on a new barium pseudocationic complex of a highly ethoxylated fatty alcohol polyglycol ether and tetraphenylborate as sensing material. The complex has been incorporated into the plasticized PVC-membrane and used as sensing material. The electrode exhibited positive linear non-Nernstian response toward different nonionic surfactants and sub-Nernstian response toward tetraphenylborate with the lower detection limit of 3.

View Article and Find Full Text PDF