Information-theoretic generalization of Granger causality principle, based on evaluation of conditional mutual information, also known as transfer entropy (CMI/TE), is redefined in the framework of Rényi entropy (RCMI/RTE). Using numerically generated data with a defined causal structure and examples of real data from the climate system, it is demonstrated that RCMI/RTE is able to identify the cause variable responsible for the occurrence of extreme values in an effect variable. In the presented example, the Siberian High was identified as the cause responsible for the increased probability of cold extremes in the winter and spring surface air temperature in Europe, while the North Atlantic Oscillation and blocking events can induce shifts of the whole temperature probability distribution.
View Article and Find Full Text PDFApplications of causal techniques to neural time series have increased extensively over last decades, including a wide and diverse family of methods focusing on electroencephalogram (EEG) analysis. Besides connectivity inferred in defined frequency bands, there is a growing interest in the analysis of cross-frequency interactions, in particular phase and amplitude coupling and directionality. Some studies show contradicting results of coupling directionality from high frequency to low frequency signal components, in spite of generally considered modulation of a high-frequency amplitude by a low-frequency phase.
View Article and Find Full Text PDFDistinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener-Granger's idea. It estimates causality based on change in dynamical compression-complexity (or compressibility) of the effect variable, given the cause variable.
View Article and Find Full Text PDFInstantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems.
View Article and Find Full Text PDFEntropy (Basel)
April 2021
An information-theoretic approach for detecting causality and information transfer was applied to phases and amplitudes of oscillatory components related to different time scales and obtained using the wavelet transform from a time series generated by the Epileptor model. Three main time scales and their causal interactions were identified in the simulated epileptic seizures, in agreement with the interactions of the model variables. An approach consisting of wavelet transform, conditional mutual information estimation, and surrogate data testing applied to a single time series generated by the model was demonstrated to be successful in the identification of all directional (causal) interactions between the three different time scales described in the model.
View Article and Find Full Text PDFAn information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth's magnetosphere-ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2019
Complex systems such as the human brain or the Earth's climate consist of many subsystems interacting in intricate, nonlinear ways. Moreover, variability of such systems extends over broad ranges of spatial and temporal scales and dynamical phenomena on different scales also influence each other. In order to explain how to detect cross-scale causal interactions, we review information-theoretic formulation of the Granger causality in combination with computational statistics (surrogate data method) and demonstrate how this method can be used to infer driver-response relations from amplitudes and phases of coupled nonlinear dynamical systems.
View Article and Find Full Text PDFThe mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes.
View Article and Find Full Text PDFUsing several methods for detection of causality in time series, we show in a numerical study that coupled chaotic dynamical systems violate the first principle of Granger causality that the cause precedes the effect. While such a violation can be observed in formal applications of time series analysis methods, it cannot occur in nature, due to the relation between entropy production and temporal irreversibility. The obtained knowledge, however, can help to understand the type of causal relations observed in experimental data, namely, it can help to distinguish linear transfer of time-delayed signals from nonlinear interactions.
View Article and Find Full Text PDFIn this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20000 points long clean time series but also noisy and short variants of the data.
View Article and Find Full Text PDFNonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed-the method based on conditional mutual information-the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping-the CCM method.
View Article and Find Full Text PDFA directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field.
View Article and Find Full Text PDFComplex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions.
View Article and Find Full Text PDFIdentifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere.
View Article and Find Full Text PDFPhys Rev Lett
February 2014
Interactions between dynamics on different temporal scales of about a century long record of data of the daily mean surface air temperature from various European locations have been detected using a form of the conditional mutual information, statistically tested using the Fourier-transform and multifractal surrogate data methods. An information transfer from larger to smaller time scales has been observed as the influence of the phase of slow oscillatory phenomena with the periods around 6-11 yr on the amplitudes of the variability characterized by the smaller temporal scales from a few months to 4-5 yr. The overall effect of the slow oscillations on the interannual temperature variability within the range 1-2 ° C has been observed in large areas of Europe.
View Article and Find Full Text PDFClin Neurophysiol
September 2012
Objective: Potential differences between coherence and phase synchronization analyses of human sleep electroencephalogram (EEG) are assessed and occurrences of phase vs. complete synchronization between EEG signals from different locations during different sleep stages are investigated.
Methods: Linear spectral coherence, mean phase coherence (MPC) z-score and Pearson's correlation coefficient of analytic amplitudes were evaluated for different spectral bands of whole-night EEG recordings from 25 healthy subjects.
We investigate the problem of detecting clusters exhibiting higher-than-average internal connectivity in networks of interacting systems. We show how the average association objective formulated in the context of spectral graph clustering leads naturally to a clustering strategy where each system is assigned to at most one cluster. A residual set is formed of the systems that are not members of any cluster.
View Article and Find Full Text PDFFunctional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence.
View Article and Find Full Text PDFOscillatory phenomena in the brain activity and their synchronization are frequently studied using mathematical models and analytic tools derived from nonlinear dynamics. In many experimental situations, however, neural signals have a broadband character and if oscillatory activity is present, its dynamical origin is unknown. To cope with these problems, a framework for detecting nonlinear oscillatory activity in broadband time series is presented.
View Article and Find Full Text PDFHow seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (>100 Hz) and reduction in system complexity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
In the natural world, the properties of interacting oscillatory systems are not constant, but evolve or fluctuating continuously in time. Thus, the basic frequencies of the interacting oscillators are time varying, which makes the system analysis complex. For studying their interactions we propose a complementary approach combining wavelet bispectral analysis and information theory.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
February 2010
Recent findings indicate that changes in synchronization of neural activities underlying sensitization and kindling could be more comprehensively understood using nonlinear methods. With this aim we have examined local synchronization using novel measure of coarse-grained information rate (CIR) in 8 EEG signals recorded at different cortical areas in 44 patients with paranoid schizophrenia. The values of local synchronization that could reflect sensitization related changes in EEG activities of cortical sites were then related to psychometric measures of epileptic-like symptoms and positive and negative schizophrenia symptoms (PANSS).
View Article and Find Full Text PDFPhase synchronization is an important phenomenon of nonlinear dynamics and has recently received much scientific attention. In this work a method for identifying phase synchronization epochs is described which focuses on estimating the gradient of segments of the generalized phase differences between phase slips in an experimental time series. In phase synchronized systems, there should be a zero gradient of the generalized phase differences even if the systems are contaminated by noise.
View Article and Find Full Text PDFA framework for detecting nonlinear oscillatory activity in broadband time series is presented. First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested whether the extracted mode is significantly different from linearly filtered noise, modeled as a linear stochastic process possibly passed through a static nonlinear transformation.
View Article and Find Full Text PDFThere is evidence that schizophrenic associations display "chaotic", random-like behavior and decreased predictability. The evidence suggests a hypothesis that the "chaotic" mental disorganization could be explained within the concept of nonlinear dynamics and complexity in the brain that may cause chaotic neural organization. Testing of the hypothesis in the present study was performed using nonlinear analysis of bilateral electrodermal activity (EDA) during resting state and an association test in 56 schizophrenic patients and 44 healthy participants.
View Article and Find Full Text PDF