Publications by authors named "Milan Joksimovic"

The aim of the study was to identify the aerobic bacterial isolates and determine corresponding antibiotic susceptibility profiles in vitro in canine clinical specimens with stromal corneal ulcers, with the goal of providing recommendations for first-line treatment with antibiotics. A total of 198 canine corneal stromal ulcer samples were studied between 2018 and 2021. A corneal swab was collected and cultured under aerobic conditions.

View Article and Find Full Text PDF

The chemokine CXCL12 has important functions in immune and central nervous systems. Moreover, a global disruption of CXCL12 in mice results in perinatal lethality. To circumvent this impediment and provide a tool for analyzing CXCL12 functions in specific organ systems, we have generated a mouse line harboring a loxP-site flanked exon 2 of CXCL12.

View Article and Find Full Text PDF

The floor plate (FP), a ventral midline structure of the developing neural tube, has differential neurogenic capabilities along the anterior-posterior axis. The midbrain FP, unlike the hindbrain and spinal cord floor plate, is highly neurogenic and produces midbrain dopaminergic (mDA) neurons. Canonical Wnt/beta-catenin signaling, at least in part, is thought to account for the difference in neurogenic capability.

View Article and Find Full Text PDF

Dopamine neurons in the ventral tegmental area (VTA) govern reward and motivation and dysregulated dopaminergic transmission may account for anhedonia and other symptoms of depression. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that regulates a broad range of brain functions through phosphorylation of a myriad of substrates, including tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis. We investigated whether and how Cdk5 activity in VTA dopamine neurons regulated depression-related behaviors in mice.

View Article and Find Full Text PDF

MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function.

View Article and Find Full Text PDF

Loss of midbrain dopaminergic (mDA) neurons underlies the motor symptoms of Parkinson's disease. Towards cell replacement, studies have focused on mechanisms underlying embryonic mDA production, as a rational basis for deriving mDA neurons from stem cells. We will review studies of β-catenin, an obligate component of the Wnt cascade that is critical to mDA specification and neurogenesis.

View Article and Find Full Text PDF

Regulating cell proliferation and differentiation in CNS development requires both extraordinary complexity and precision. Neural progenitors receive graded overlapping signals from midline signaling centers, yet each makes a unique cell fate decision in a spatiotemporally restricted pattern. The Nde1-Lis1 complex regulates individualized cell fate decisions based on the geographical location with respect to the midline.

View Article and Find Full Text PDF

The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels.

View Article and Find Full Text PDF

Background: The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.

View Article and Find Full Text PDF

Midbrain dopamine neurons (mDA) are important regulators of diverse physiological functions, including movement, attention, and reward behaviors. Accordingly, aberrant function of dopamine neurons underlies a wide spectrum of disorders, such as Parkinson's disease (PD), dystonia, and schizophrenia. The distinct functions of the dopamine system are carried out by neuroanatomically discrete subgroups of dopamine neurons, which differ in gene expression, axonal projections, and susceptibility in PD.

View Article and Find Full Text PDF

The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons.

View Article and Find Full Text PDF

Previously, we reported a line of mice (Hoxa5SV2) that ectopically expresses HOXA5 in the developing cervical and brachial dorsal spinal cord. Animals from this line exhibited a clear loss of cells in the outer lamina of the mature dorsal horn that coincided with an adult phenotype of sensory and motor defects of the forelimb. In this report, we examined the etiology of lost dorsal horn cells.

View Article and Find Full Text PDF

The Hox genes encode transcription factors that are indispensable for proper spatio-temporal patterning of the vertebrate body axes. As for other Hox genes, region-specific expression of Hoxa5 appears to be important for correct function during development. In mouse, Hoxa5 transcripts are differentially expressed in specific mesoderm-derived structures and in the most anterior domain of expression in the central nervous system (CNS), in contrast to indistinct patterns seen in the posterior CNS.

View Article and Find Full Text PDF

Mutation of murine Hoxa5 has shown that HOXA5 controls lung, gastrointestinal tract and vertebrae development. Hoxa5 is also expressed in the spinal cord, yet no central nervous system phenotype has been described in Hoxa5 knockouts. To identify the role of Hoxa5 in spinal cord development, we developed transgenic mice that express HOXA5 in the dorsal spinal cord in the brachial region.

View Article and Find Full Text PDF