A significant effort in optimizing the chemical composition and powder metallurgical processing led to preparing new-generation ferritic coarse-grained ODS alloys with a high nano-oxide content. The optimization was aimed at high-temperature creep and oxidation resistance at temperatures in the range of 1100-1300 °C. An FeAlOY alloy, with the chemical composition Fe-10Al-4Cr-4YO (wt.
View Article and Find Full Text PDFMechanical alloying (MA) of powders represents the first processing step in the production of oxide dispersion-strengthened (ODS) alloys. MA is a time and energy-consuming process also in the production of Fe-10Al-4Cr-4YO creep and oxidation-resistant ODS nanocomposite, denoted as the FeAlOY, and it deserves to be optimized. MA is performed at two different temperatures at different times.
View Article and Find Full Text PDFOxide-dispersion-strengthened (ODS) Fe-Al-YO-based alloys (denoted as FeAlOY) containing 5 vol. % of nano-oxides have a potential to become top oxidation and creep-resistant alloys for applications at temperatures of 1100-1300 °C. Oxide dispersoids cause nearly perfect strengthening of grains; thus, grain boundaries with limited cohesive strength become the weak link in FeAlOY in this temperature range.
View Article and Find Full Text PDFThe coarse-grained new-generation Fe-Al-YO-based oxide dispersion strengthened (ODS) alloys contain 5 vol.% homogeneously dispersed yttria nano-precipitates and exhibit very promising creep and oxidation resistance above 1000 °C. The alloy is prepared by the consolidation of mechanically alloyed powders via hot rolling followed by secondary recrystallization.
View Article and Find Full Text PDFTensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties.
View Article and Find Full Text PDF