Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30-year-old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17-year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum.
View Article and Find Full Text PDFResponses of forest trees to defoliation by insects such as gypsy moth vary greatly from site to site and from individual to individual. To determine whether some of this variation could be explained by variation in other stress factors, red oak (Quercus rubra L.) seedlings were exposed to low and high light, water, mineral nutrient, and defoliation treatments, in a complete factorial design in a greenhouse.
View Article and Find Full Text PDF