Publications by authors named "Milan Antonijevic"

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Pollen grains, with their resilient sporopollenin exine and defined morphologies, have been explored as bio-templates for the synthesis of calcium phosphate minerals, particularly hydroxyapatite (HAp) and β-tricalcium phosphate (TCP). Various pollen morphologies from different plant species (black alder, dandelion, lamb's quarters, ragweed, and stargazer lily) were evaluated. Pollen grains underwent acid washing to remove allergenic material and facilitate subsequent calcification.

View Article and Find Full Text PDF

3D printed LEGO®-like designs are an attractive approach for the development of compartmental delivery systems due to their potential for dose personalisation through the customisation of drug release profiles. Additive manufacturing technologies such as Fused Deposition Modelling (FDM) are ideal for the printing of structures with complex geometries and various sizes. This study is a paradigm for the fabrication of 3D printed LEGO® -like tablets by altering the design of the modular units and the filament composition for the delivery of different drug substances.

View Article and Find Full Text PDF
Article Synopsis
  • Determining target analytes, like caffeine, at low concentrations is crucial in industries such as pharmaceuticals, environmental protection, and food safety due to both their benefits and potential negative effects.
  • Electrochemical methods using sensors, especially those based on carbon materials, are favored for their efficiency, speed, affordability, and ease of use.
  • This review summarizes current literature on the development and enhancement of electrochemical sensors for accurate caffeine detection.
View Article and Find Full Text PDF

Films based on carrageenan, alginate and poloxamer 407 have been formulated with the main aim to apply prepared formulations in wound healing process. The formulated films were loaded with diclofenac, an anti-inflammatory drug, as well as diclofenac and curcumin, as multipurpose drug, in order to enhance encapsulation and achieve controlled release of these low-bioavailability compounds. The obtained data demonstrated improved drug bioavailability (encapsulation efficiency higher than 90%), with high, cumulative in vitro release percentages (90.

View Article and Find Full Text PDF

Polyphenolic compounds are used for treating various diseases due to their antioxidant and anticancer properties. However, utilization of hydrophobic compounds is limited due to their low bioavailability. In order to achieve a greater application of hydrophobic bioactive compounds, hydrogel beads based on biopolymers can be used as carriers for their enhanced incorporation and controlled delivery.

View Article and Find Full Text PDF
Article Synopsis
  • - This research aimed to create a non-toxic and cost-effective electrochemical sensor for detecting L-tryptophan, utilizing a graphite rod from zinc-carbon batteries to tackle electronic waste.
  • - Two electrochemical methods, differential pulse voltammetry and cyclic voltammetry, were employed, revealing that the oxidation of L-tryptophan is influenced by pH, with optimal response at pH 4.0, and operates as an irreversible two-electron/two-proton reaction.
  • - The sensor demonstrated reliable detection capabilities, with a limit of detection at 1.73 µM and a quantification limit at 5.78 µM, successfully analyzing L-tryptophan in milk and apple
View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and scaling up theophylline-nicotinamide (THL-NIC) cocrystals using a method called hot-melt extrusion (HME).
  • Key processing parameters included barrel temperature, feed rate, and screw speed, with a residence time of about 47 seconds for the larger batches.
  • Characterization methods showed the cocrystals had a purity of 98.6%, and their quality was stable even under challenging conditions.
View Article and Find Full Text PDF

The development and evaluation of a controlled-release (CR) pharmaceutical solid dosage form comprising xanthan gum (XG), low molecular weight chitosan (LCS), and metoprolol succinate (MS) are reported. The research is, partly, based upon the utilization of computational tools: in this case, molecular dynamics simulations (MDs) and the response surface method (RSM) in order to underpin the design/prediction and to minimize the experimental work required to achieve the desired pharmaceutical outcomes. The capability of the system to control the release of MS was studied as a function of LCS (% w/w) and total polymer (LCS and xanthan gum (XG)) to drug ratio (P/D) at different tablet tensile strengths.

View Article and Find Full Text PDF

This paper aims to examine the efficiency of 5-chlorobenzotriazole (5Cl-BTA) as a copper corrosion inhibitor in acidic rain solutions with a pH value of 2.42 by the electrochemical polarization method. 5-Chlorobenzotriazole acts similar to a mixed type inhibitor, according to the potentiodynamic polarization measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Titanium is a widely used biomaterial, and this study examines how adenine, thymine, and l-histidine affect its corrosion in simulated body solutions.
  • Various electrochemical techniques revealed that these biomolecules enhance titanium's corrosion resistance by forming a stable protective film on its surface.
  • Quantum chemical calculations supported the electrochemical findings, suggesting that adenine, thymine, and l-histidine could serve as effective corrosion inhibitors for titanium.
View Article and Find Full Text PDF

The work presented here proposes an innovative approach to 3D chemical mapping of solid formulations by microphotogrammetry. We present details of a novel microphotogrammetry apparatus and the first results for the application of photogrammetry to the dissolution analysis of solid pharmaceutical dosage forms. Unlike other forms of optical imaging, microphotogrammetry allows a true 3D model to be constructed that includes direct observation of the sides of the sample rather than only top-down topographic imaging.

View Article and Find Full Text PDF

The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties.

View Article and Find Full Text PDF

The effects of adenine, salicylaldoxime and 4(5)-methylimidazole on brass corrosion in NaCl were investigated. The investigation comprised electrochemical techniques, scanning electron microscopy and quantum chemical calculation. The results obtained by polarization measurements show that the examined compounds successfully inhibited the corrosion of brass.

View Article and Find Full Text PDF

It is known that if unused drugs are improperly disposed, they can pollute the environment. Furthermore, researchers are still trying to find an environmentally friendly corrosion inhibitor. These factors lead to the possible application of unused pharmaceutical compounds as corrosion inhibitors.

View Article and Find Full Text PDF

Changes in tensile properties and the glass transition temperature (T) of plasticized polymer films are typically attributed to molecular mobility, often with no empirical data to support such an assertion. Herein solvent cast HPMC films containing varying amounts of PEG, as the plasticizer, were used to assess the dependence of tensile properties and the T on glassy state molecular mobility. Molecular mobility (molecular relaxation time and temperature) parameters were determined by Thermally Stimulated Current Spectroscopy (TSC).

View Article and Find Full Text PDF

Introduction: Emollient therapy is the mainstay for treating skin conditions such as atopic dermatitis and psoriasis. New emollients have been introduced recently and are assumed to be therapeutically interchangeable with the innovator products because, superficially, they appear to have similar compositions. This study compares a) the ex vivo human skin occlusion performance and b) the visual and microscopic properties of Isomol gel (IMG) and Doublebase gel (DBG).

View Article and Find Full Text PDF

Hydrophilic matrices composed of chitosan (CS) and xanthan gum (XG) complexes are of pharmaceutical interest in relation to drug delivery due to their ability to control the release of active ingredients. Molecular dynamics simulations (MDs) have been performed in order to obtain information pertaining to the effect of the state of protonation and degree of -acetylation (DA) on the molecular conformation of chitosan and its ability to interact with xanthan gum in aqueous solutions. The conformational flexibility of CS was found to be highly dependent on its state of protonation.

View Article and Find Full Text PDF

The removal of Cr(III) ions and methylene blue (MB) from aqueous solutions by xanthated corn cob (xCC) in batch conditions was investigated. The sorption capacity of xCC strongly depended of the pH, and increase when the pH rises. The kinetics was well fitted by pseudo-second-order and Chrastil's model.

View Article and Find Full Text PDF

A new approach to achieving chemical mapping on a nanoscale is described that can provide 2D and tomographic images of surface and near-surface structure. The method comprises dissolving material from the surface of the sample by applying a series of aliquots of solvent, then analyzing their contents after removing them; in between exposures, the surface is imaged with atomic force microscopy. This technique relies on being able to compensate for any drift between images by use of software.

View Article and Find Full Text PDF

Molecular mobility has long been established to relate to textural properties and stability of polymer films and is therefore an important property to characterise to better understand pharmaceutical film formulations. The molecular mobility of solvent cast hydroxyethyl cellulose (HEC) films has been investigated by means of thermally stimulated current (TSC) below the temperature at which the film was formed. Preliminary physical characterisation of the films was performed using XRPD, TGA, DSC and texture analysis (tensile properties).

View Article and Find Full Text PDF

Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure.

View Article and Find Full Text PDF

In this study, the samples of the spatial soil and organs of the grapevine (Vitis vinifera) cultivar Tamjanika were collected from the selected zones near the Mining and Smelting Complex Bor (East Serbia). They were analyzed by ICP-OES to determine the content of Cu, Zn, Pb, As, Cd, and Ni with the aim of ascertaining if these data may help in the assessment and improvement of the quality of environment in polluted areas such as Bor and its surrounding area. The results obtained from the calculated biological and enrichment factors, as well as from the Pearson correlation study and hierarchical cluster analysis confirmed that very useful information is recorded in plant organs: root, stem, leaves, and fruit.

View Article and Find Full Text PDF

Stress stability testing represents an important part of the drug development process. It is used as an important tool for the identification of degradation products and degradation pathways, as well as for the assessment of changes in physical form of drug molecules. The impact of excipients on the stability of olanzapine confirms that levels of impurities and degradants are limiting parameters and are therefore used for stability evaluation.

View Article and Find Full Text PDF