Publications by authors named "Milan Ambrozic"

The active electrocaloric (EC) regenerator exploiting electric conversion into thermal energy has recently become important for developing a new generation of heat-management devices. We analyze an active EC regenerator numerically. We establish a temperature span across the regenerator by commuting a liquid crystalline (LC) unit between regions with and without an external electric field .

View Article and Find Full Text PDF

Glassy liquid crystalline systems are expected to show significant history-dependent effects. Two model glassy systems are the RAN and SSS (sprinkled silica spin) lattice models. The RAN model is a Lebwohl-Lasher lattice model with locally coupled nematic spins, together with uncorrelated random anisotropy fields at each site, while the SSS model has a finite concentration of impurity spins frozen in random directions.

View Article and Find Full Text PDF

Orientational ordering of a homogeneous mixture of uniaxial liquid crystalline (LC) molecules and magnetic nanoparticles (NPs) is studied using the Lebwohl-Lasher lattice model. We consider cases where NPs tend to be oriented perpendicularly to LC molecules due to elastic forces. We study domain-type configurations of ensembles, which are quenched from the isotropic phase.

View Article and Find Full Text PDF

We study the influence of external electric or magnetic field B on orientational ordering of nematic liquid crystals or of other rod-like objects (e.g. nanotubes immersed in a liquid) in the presence of random anisotropy field type of disorder.

View Article and Find Full Text PDF

Within the Landau-de Gennes phenomenological theory, we study the influence of an applied electric field with average strength E{a} on the position of a nematic line defect with topological charge M=+/-1/2 in a hybrid cell. We explore the biaxial structure of the defect core and we describe its expulsion from the cell upon increasing E{a}. We show that prior to the expulsion the defect core displays dramatic changes for strong enough surface anchorings.

View Article and Find Full Text PDF