Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor.
View Article and Find Full Text PDFAnticancer agents that target both tumor cells and angiogenesis are of potential interest for glioblastoma (GB) therapy. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueous solubility and undesirable side effects limit its clinical application, including local treatment.
View Article and Find Full Text PDFBackground: Glioblastoma (GB) is the most malignant brain tumor in adults. It is characterized by angiogenesis and a high proliferative and invasive capacity. Standard therapy (surgery, radiotherapy and chemotherapy with temozolomide) is of limited efficacy.
View Article and Find Full Text PDFChitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.
View Article and Find Full Text PDFEmployment of nanovehicular system for delivering apoptogenic agent to cancer cells for inducing apoptosis has widely been investigated. Loading efficacy and controlled release of the agents are of the inseparable obstacles that hamper the efforts in reaching an efficacious targeted cancer therapy method. When the carrier itself is apoptogenic, then there is no need to load the carrier with apoptogenic agent and just delivering of the particle to the specific location matters.
View Article and Find Full Text PDFHydroxyapatite with different characteristics in terms of morphology and chemistry were prepared via conventional sintering and low temperature biomimetic mineralization methods. The biomineralization route introduced nanocrystalline carbonate-substituted hydroxyapatite (n-CHA) with needle-like crystals ranging 20-30 nm whereas sintered HA (S-HA) comprised of polygonal grains ranging 2-5 μm. The response of fibroblastic cells was investigated using the extract of the samples whereas Wistar rat-derived mesenchymal stem cells (MSCs) were evaluated on top of each sample while maintaining in an osteogenic-free medium.
View Article and Find Full Text PDFThe main aim of nanomedicine is to revolutionize the health care system and find effective approaches to fighting fatal diseases. Therapeutic beams, which are employed in radiation therapy, do not discriminate between normal and cancerous cells and must rely on targeting the radiation beams to specific cells. Interestingly, the application of nanoscale particles in radiation therapy has aimed to improve outcomes in radiation therapy by increasing toxicity in tumors and reducing it in normal tissues.
View Article and Find Full Text PDFThis paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19-2.23 wt%) and compares these properties with those of a pure gypsum as control.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2012
Bone cements based on calcium phosphate powder and different concentrations of colloidal silica suspensions were developed. Setting time and washout behavior of the cements were recorded and compared with those of a control group prepared by the same powder phase and distilled water as liquid. The phase composition, compressive strength, and morphology of the cements were determined after incubation and soaking in simulated body fluid.
View Article and Find Full Text PDF