Background: The state-of-the-art deep learning based cancer type prediction can only predict cancer types whose samples are available during the training where the sample size is commonly large. In this paper, we consider how to utilize the existing training samples to predict cancer types unseen during the training. We hypothesize the existence of a set of type-agnostic expression representations that define the similarity/dissimilarity between samples of the same/different types and propose a novel one-shot learning model called CancerSiamese to learn this common representation.
View Article and Find Full Text PDFBackground: Cancer has been a leading cause of death in the United States with significant health care costs. Accurate prediction of cancers at an early stage and understanding the genomic mechanisms that drive cancer development are vital to the improvement of treatment outcomes and survival rates, thus resulting in significant social and economic impacts. Attempts have been made to classify cancer types with machine learning techniques during the past two decades and deep learning approaches more recently.
View Article and Find Full Text PDFEpitranscriptome is an exciting area that studies different types of modifications in transcripts and the prediction of such modification sites from the transcript sequence is of significant interest. However, the scarcity of positive sites for most modifications imposes critical challenges for training robust algorithms. To circumvent this problem, we propose MR-GAN, a generative adversarial network (GAN) based model, which is trained in an unsupervised fashion on the entire pre-mRNA sequences to learn a low dimensional embedding of transcriptomic sequences.
View Article and Find Full Text PDFBackground: Precise prediction of cancer types is vital for cancer diagnosis and therapy. Through a predictive model, important cancer marker genes can be inferred. Several studies have attempted to build machine learning models for this task however none has taken into consideration the effects of tissue of origin that can potentially bias the identification of cancer markers.
View Article and Find Full Text PDFThe recent accumulation of cancer genomic data provides an opportunity to understand how a tumor's genomic characteristics can affect its responses to drugs. This field, called pharmacogenomics, is a key area in the development of precision oncology. Deep learning (DL) methodology has emerged as a powerful technique to characterize and learn from rapidly accumulating pharmacogenomics data.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
2'-O-methylation (2'-O-me) of ribose moiety is one of the significant and ubiquitous post-transcriptional RNA modifications which is vital for metabolism and functions of RNA. Although recent development of new technology (Nmseq) enabled biologists to find precise location of 2'-O-me in RNA sequences, there is still a lack of computational tools that can also provide high resolution prediction of this RNA modification. In this paper, we propose a deep learning based method that takes advantage of an embedding method to learn complex feature representation of pre-mRNA sequences and employs a Convolutional Neural Network to fine-tune the features required for accurate prediction of such alteration.
View Article and Find Full Text PDF