Publications by authors named "Milad Asgarpour Khansary"

It is impossible to optimize a process for a target drug product with the desired profile without a proper understanding of the interplay among the material attributes, the process parameters, and the attributes of the drug product. There is a particular need to bridge the micro- and mesoscale events that occur during this process. Here, we propose а molecular engineering methodology for the continuous cocrystallization process, based on Raman spectra measured experimentally with a probe and from quantum mechanical calculations.

View Article and Find Full Text PDF

Continuous co-crystallization in a twin-screw granulator is a promising technology. In order to fundamentally optimize the process flow, it is necessary to investigate the kinetics of molecular interactions within the mixture and the effect of these interactions on co-crystal formation. In this study, the processes governing the co-crystallization of ibuprofen and nicotinamide were considered.

View Article and Find Full Text PDF

The native cellulose, through TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, can be converted into individual fibers. It has been observed that oxidized fibers disperse completely and individually in water. It is believed that electrostatic repulsive forces might be responsible for such observations.

View Article and Find Full Text PDF

Cocrystallization of ibuprofen and nicotinamide in hot melt extrusion process has been subject of many studies addressing low ibuprofen bioavailability. However, it is observed that the process of cocrystal formation of ibuprofen and nicotinamide might be incomplete. We hypothesized that formation of dimers of ibuprofen-ibuprofen or dimers nicotinamide- nicotinamide might be the cause of such poor cocrystalization process by altering the phase behaviour of the mixture.

View Article and Find Full Text PDF

This paper is devoted to investigate the suitability of cellulose for estrogens micropollutants removal from water effluent. For this purpose, the sorption of eight estrogens including Estradiol, Estrone, Testosterone, Progesterone, Estriol, Mestranol, Ethinylestradiol and Diethylstilbestrol were investigated. The charge density profiles and sorption curves were obtained and discussed using quantum chemical calculations where the Accelrys Materials Studio software and COSMO-SAC model were employed.

View Article and Find Full Text PDF

Passive samplers are of the most applied methods and tools for measuring concentration of hydrophobic organic compounds in water (c ) in which the polymer-water partition coefficients (D) are of fundamental importance for reliability of measurements. Due to the cost and time associated with the experimental researches, development of a predictive method for estimation and evaluation of performance of polymeric passive samplers for various hydrophobic organic compounds is highly needed and valuable. For this purpose, in this work, following the fundamental chemical thermodynamic equations governing the concerned local equilibrium, successful attempts were made to establish a theoretical model of polymer-water partition coefficients.

View Article and Find Full Text PDF

To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters.

View Article and Find Full Text PDF