The viral NS2B-NS3 protease is a promising drug target to combat dengue virus (DENV) and other emerging flaviviruses. The discovery of novel DENV protease inhibitors with antiviral efficacy is hampered by the low predictive power of biochemical assays. We herein present a comparative evaluation of biochemical DENV protease assay conditions and their benchmarking against antiviral efficacy and a protease-specific reporter gene assay.
View Article and Find Full Text PDFRabbit hemorrhagic disease virus (RHDV) typically causes a fatal disease in rabbits. In Australia, RHDV was imported to control the feral rabbit population, while it poses a severe threat to native rabbits in other countries. RHDV variants are genetically diverse and serological studies using antibodies isolated from infected rabbits or raised against RHDV virus-like particles (VLPs) have found RHDV variants antigenically distinct.
View Article and Find Full Text PDFBackground & Aims: HBV persistence is maintained by both an episomal covalently closed circular (ccc)DNA reservoir and genomic integration of HBV DNA fragments. While cccDNA transcription is regulated by Cullin4A-DDB1-HBx-mediated degradation of the SMC5/6 complex, HBsAg expression from integrants is largely SMC5/6 independent. Inhibiting neddylation of Cullin-RING ubiquitin ligases impairs degradation of substrates.
View Article and Find Full Text PDFThe RNA viruses SARS-CoV-2 and dengue pose a major threat to human health worldwide and their proteases (M; NS2B/NS3) are considered as promising targets for drug development. We present the synthesis and biological evaluation of novel benzoxaborole inhibitors of these two proteases. The most active compound achieves single-digit micromolar activity against SARS-CoV-2 M in a biochemical assay.
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by the SARS-CoV-2 virus, has a huge impact on the world. Although several vaccines have recently reached the market, the development of specific antiviral drugs against SARS-CoV-2 is an important additional strategy in fighting the pandemic. One of the most promising pharmacological targets is the viral main protease (M).
View Article and Find Full Text PDFThe viral serine protease NS2B-NS3 is one of the promising targets for drug discovery against dengue virus and other flaviviruses. The molecular recognition preferences of the protease favor basic, positively charged moieties as substrates and inhibitors, which leads to pharmacokinetic liabilities and off-target interactions with host proteases such as thrombin. We here present the results of efforts that were aimed specifically at the discovery and development of noncharged, small-molecular inhibitors of the flaviviral proteases.
View Article and Find Full Text PDFThe β-lactam ring represents a valuable moiety that can induce covalent binding of an inhibitor to its target. In this study, we explored di- and tripeptides with β-lactam electrophilic warheads as inhibitors of dengue and West Nile virus NS2B-NS3 protease. Tripeptides with a (3)-β-lactam moiety displayed the highest activity, with IC and EC values in the lower micromolar range in biochemical and cellular assays.
View Article and Find Full Text PDFInfections with flaviviruses such as dengue virus (DENV) are prevalent throughout tropical regions worldwide. Replication of these viruses depends on tubulin, a host cell factor that can be targeted to obtain broad-spectrum antiviral agents. Targeting of tubulin does, however, require specific measures to avoid toxic side-effects.
View Article and Find Full Text PDFThe Zika virus presents a major public health concern due to severe fetal neurological disorders associated with infections in pregnant women. In addition to vaccine development, the discovery of selective antiviral drugs is essential to combat future epidemic Zika virus outbreaks. The Zika virus NS2B-NS3 protease, which performs replication-critical cleavages of the viral polyprotein, is a promising drug target.
View Article and Find Full Text PDFAttachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be critical for the infection process. Therefore, we have determined binding epitopes of synthetic type 1 to 6 blood group A- and B-tetrasaccharides binding to GII.4 human Norovirus virus like particles (VLPs) using STD NMR experiments.
View Article and Find Full Text PDFHuman norovirus interacts with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. The genogroup II genotype 4 (GII.4) noroviruses are the dominant cluster, evolve every other year, and are thought to modify their binding interactions with different HBGA types.
View Article and Find Full Text PDFThe norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions.
View Article and Find Full Text PDFHuman noroviruses bind histo-blood group antigens (HBGAs) and this interaction is thought to be important for an infection. We identified two additional fucose-binding pockets (termed fucose-3/4 sites) on a genogroup II human (GII.10) norovirus-protruding (P) dimer using X-ray crystallography.
View Article and Find Full Text PDFUnlabelled: Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family (Lagovirus genus). RHDV is highly contagious and attaches to epithelial cells in the digestive or respiratory tract, leading to massive lesions with high mortality rates. A new variant of RHDV (termed RHDVb) recently has emerged, and previously vaccinated rabbits appear to have little protection against this new strain.
View Article and Find Full Text PDFNorovirus infects different animals, including humans, mice, dogs, and cats. Here, we show an X-ray crystal structure of a feline GIV.2 norovirus capsid-protruding (P) domain to 2.
View Article and Find Full Text PDFUnlabelled: Human noroviruses are the dominant cause of outbreaks of gastroenteritis around the world. Human noroviruses interact with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. Indeed, synthetic HBGAs or HBGA-expressing enteric bacteria were shown to enhance norovirus infection in B cells.
View Article and Find Full Text PDF