It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. f. sp.
View Article and Find Full Text PDFPlant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root-invading pathogens suppress immunity. The Avr2 effector from the tomato root- and xylem-colonizing pathogen Fusarium oxysporum suppresses immune signalling induced by various pathogen-associated molecular patterns (PAMPs).
View Article and Find Full Text PDFCell-to-cell movement of proteins through plasmodesmata is a widely-established mechanism for intercellular signaling in plants. Current techniques to study intercellular protein translocation rely on single-cell transformation using particle bombardment or transgenic lines expressing photo-inducible fluorophores. The method presented here allows visualization and objective quantification of (effector) protein movement between leaf cells.
View Article and Find Full Text PDFPathogens use effector proteins to manipulate their hosts. During infection of tomato, the fungus Fusarium oxysporum secretes the effectors Avr2 and Six5. Whereas Avr2 suffices to trigger I-2-mediated cell death in heterologous systems, both effectors are required for I-2-mediated disease resistance in tomato.
View Article and Find Full Text PDF