Publications by authors named "Mikuska P"

Titanium dioxide nanoparticles (TiO NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO NPs (0.

View Article and Find Full Text PDF

Background: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited.

View Article and Find Full Text PDF

A total of 152 aerosol and spider web samples were collected: 96 spider's webs in karst areas in 4 European countries (Czech Republic, France, Italy, and Slovakia), specifically from the surface environment ( = 44), photic zones of caves ( = 26), and inside (aphotic zones) of caves ( = 26), 56 Particulate Matter (PM) samples from the Cave System (speleotherapy facility; = 21) and from aerosol collected from the nearby city of ( = 35) in the Czech Republic. Nontuberculous mycobacteria (NTM) were isolated from 13 (13.5%) spider's webs: 5 isolates of saprophytic NTM (, , , and complex) and 6 isolates of potentially pathogenic NTM ( ssp.

View Article and Find Full Text PDF

PM1 and PM2.5 aerosol samples collected during four seasons were analysed for bioaccessibility of 21 elements and oxidative potential (OP) determined by the dithiothreitol (DTT) assay in three simulated lung fluids (SLFs): deionised water, simulated alveoli fluid and Gamble's solution. Most elements had higher bioaccessibility in the submicron fraction than in the fine size fraction.

View Article and Find Full Text PDF

The study describes gaseous and particulate emissions from the combustion of two types of coal (hard and brown) in three types of boilers (one modern-type and two old-type boilers) used for residential heating. The importance of the heat outputs (nominal and two reduced outputs) for the emission of pollutants was also studied. Three outputs (95-108%, 58-73% and 26-50%) covered the expected operation of these boilers in real households under different outdoor air temperatures in the winter.

View Article and Find Full Text PDF

A sensitive and fast method for simultaneous determination of gaseous ammonia (NH) and particulate ammonium (NH) in ambient air is presented. NH is sampled in a cylindrical wet effluent diffusion denuder (CWEDD) and analyzed online by a continuous flow system with a fluorescence detector (FLD), while NH bound to aerosol particles is sampled in parallel by a condensation growth unit-the aerosol counterflow two-jet unit (CGU-ACTJU) sampler-and analyzed online with another FLD. The sensitive fluorescence detection of ammonium in concentrates of the CWEDD and the ACTJU is based on its reaction with -phthaldialdehyde and sulfite to form isoindol-1-sulfonate.

View Article and Find Full Text PDF

The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO) NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance.

View Article and Find Full Text PDF

Objectives: We used mice as an animal model to investigate the entry of ZnO nanoparticles from the ambient air into the lungs and other organs, subsequent changes in Zn levels and the impact on the transcription of Zn homeostasis-related genes in the lungs.

Methods: The mice were exposed to two concentrations of ZnO nanoparticles; lower (6.46 × 10 particles/cm) and higher (1.

View Article and Find Full Text PDF

We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 10 NPs/m) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA.

View Article and Find Full Text PDF

Lead oxide nanoparticles (PbONPs), upon their entry into the lungs inhalation, induce structural changes in primary and secondary target organs. The fate and ultrastructural localization of PbONPs in organs is known to be dependent on the specific organ. Here, we focused on the differences in the ability to clear the inhaled PbONPs from secondary target organs and on molecular and cellular mechanisms contributing to nanoparticle removal.

View Article and Find Full Text PDF

Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m; 1.

View Article and Find Full Text PDF

Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.

View Article and Find Full Text PDF

The use of alternative fuels or biofuel blends could be a way to reduce the environmental burden of increasing traffic. The aim of this study was to compare emissions from conventional fuels and alternative biofuels for diesel and spark-ignition engines under comparable conditions, i.e.

View Article and Find Full Text PDF

Although plants are often exposed to atmospheric nanoparticles (NPs), the mechanism of NP deposition and their effects on physiology and metabolism, and particularly in combination with other stressors, are not yet understood. Exploring interactions between stressors is particularly important for understanding plant responses in urban environments where elevated temperatures can be associated with air pollution. Accordingly, 3-year-old spruce seedlings were exposed for 2 weeks to aerial cadmium oxide (CdO) NPs of environmentally relevant size (8-62 nm) and concentration (2 × 10 cm).

View Article and Find Full Text PDF

The chemical composition of emissions from old-type (an overfire boiler, a boiler with down-draft combustion) and modern-type (an automatic and a gasification boiler) boilers was compared. The boilers were operated with different fuels (brown and hard coal, wet and dry wood, wood pellets and brown coal briquettes) with reduced output (40-60%). The emissions were characterized by the contents of gaseous components (NO, SO, CO, CO, OGC); and particulate organic compounds (alkanes, polycyclic aromatic hydrocarbons, saccharides), including organic markers (monosaccharide anhydrides, diterpenoids, methoxyphenols, hopanes), which are used for source apportionment of particulate matter in ambient air.

View Article and Find Full Text PDF

The inhalation or application of nanoparticles (NPs) has serious impacts on immunological reactivity. However, the effects of NPs on the immune system are influenced by numerous factors, which cause a high variability in the results. Here, mice were exposed to a three month continuous inhalation of copper oxide (CuO) NPs, and at different time intervals (3, 14, 42 and 93 days), the composition of cell populations of innate and adaptive immunity was evaluated in the spleen by flow cytometry.

View Article and Find Full Text PDF

The aim of this study was to ascertain whether long-term occupational exposure to nanoparticles would affect relative leukocyte telomere length (LrTL). We analysed occupational exposure to size-resolved aerosol particles, with special emphasis on nanoparticles at two workshops: i/ the production of nanocomposites containing metal oxides; ii/ laboratory to test experimental exposure of nano-CuO to rodents. Thirty five exposed researchers (age 39.

View Article and Find Full Text PDF
Article Synopsis
  • Research on the toxicity of zinc oxide (ZnO) nanoparticles (NP) is limited, particularly in mammal models, leading to a study on their inhalation effects in mice.
  • Female mice were exposed to different concentrations of ZnO NPs for either 3 days or 3 months, with an analysis conducted on 298 splice junctions related to gene expression.
  • Findings showed alterations in splice junction expression related to processes such as oxidative stress, apoptosis, and inflammation after both short and long-term exposure, highlighting potential negative biological effects of ZnO NP inhalation.
View Article and Find Full Text PDF

The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM and PM (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014.

View Article and Find Full Text PDF

Residential areas in urban agglomerations and also in the countryside are often burdened with high concentrations of aerosol in winter, this originating from local combustion sources. Aerosol sources can be identified by a monitoring of organic markers of biomass burning. Abundant markers of biomass and softwood burning are levoglucosan and dehydroabietic acid, respectively.

View Article and Find Full Text PDF

A new aerosol sampler based on the original version of Aerosol Counterflow Two-Jets Unit (ACTJU) is described. The ACTJU collector, connected with a water-based Condensation Growth Unit (CGU) placed upstream of the ACTJU, accomplished the quantitative collection of fine and ultrafine aerosol particles down to a few nanometers in diameter. Condensation of water vapor in the CGU enlarges nanometer sized particles to larger sizes in the supermicrometer range and the formed droplets are then collected into water in the ACTJU collector.

View Article and Find Full Text PDF

Lead nanoparticles (NPs) are released into air from metal processing, road transport or combustion processes. Inhalation exposure is therefore very likely to occur. However, even though the effects of bulk lead are well known, there is limited knowledge regarding impact of Pb NPs inhalation.

View Article and Find Full Text PDF

Background: Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs.

View Article and Find Full Text PDF

Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter <100 nm exhibit the highest deposition efficiency in human lungs.

View Article and Find Full Text PDF