Several variants of models for predicting the IC values of inhibitors of influenza virus neuraminidase are presented for both individual strains and also for combinations of data for neuraminidases of several strains. They are based on the use of calculated energy contributions to the amount of change in the free energy of enzyme-inhibitor complexes. In contrast to previous works, aimed at the complex modeling, we added a procedure of comparison of the docking variants with one of the neuraminidase inhibitors, for which the structure of the complexes was determined experimentally.
View Article and Find Full Text PDFSeveral variants of models for predicting the IC50 values of inhibitors of influenza virus neuraminidase are presented for both individual strains and for combinations of data for neuraminidases of several strains. They are based on the use of calculated energy contributions to the amount of change in the free energy of enzyme-inhibitor complexes. In contrast to previous works, aimed at the complex modeling, we added a procedure of comparison of the docking variants with one of the neuraminidase inhibitors, for which the structure of the complexes was determined experimentally.
View Article and Find Full Text PDFThe overall model for prediction of IC50 values for inhibitors of neuraminidase influenza virus A and B has been created. It combines data about IC50 values of complexes of 40 variants of neuraminidases of influenza A (7 serotypes) and B and three known inhibitors (oseltamivir, zanamivir, peramivir). The model also uses only data of enthalpy contributions to the potential energy of inhibitor/protein and substrate (MUNANA)/protein complexes.
View Article and Find Full Text PDFPreliminary results of construction of overall model for prediction of IC50 value of ligands of influenza virus neuraminidase of any strain are presented. We used MM-PBSA (MM-GBSA) energy terms calculated for the complexes obtained after modeling of 30 variants of neuraminidase structures, subsequent docking and simulation of molecular dynamics as independent variables in prediction equations. The structures of known neuraminidase-inhibiting drugs (oseltamivir, zanamivir and peramivir) and a neuraminidase substrate (MUNANA) were used as ligands.
View Article and Find Full Text PDFThe aim of this study was to evaluate sequence coverage of five model proteins (CYB5A, SMAD4, RAB27B, FECH, and CXXC1) by means of shotgun proteomic data analysis employing different methods of data treatment including database-dependent search engines (MASCOT and X!Tandem) and de novo sequencing software ((PEAKS, Novor, and PepNovo+). In order to achieve maximal results, multiprotease hydrolysis including enzymes trypsin, LYS-C, ASPN and GluC was performed in solution and using the FASP method. High resolution mass spectrometry was carried out with a Q EXACTIVE HF hybrid mass spectrometer in the positive ionization mode; parent ions with the highest intensity and a charge range from +2 to +6 were fragmented in the HCD mode.
View Article and Find Full Text PDFThree de novo sequencing programs (Novor, PEAKS and PepNovo+) have been used for identification of 48 individual human proteins constituting the Universal Proteomics Standard Set 2 (UPS2) ("Sigma-Aldrich", USA). Experimental data have been obtained by tandem mass spectrometry. The MS/MS was performed using pure UPS2 and UPS2 mixtures with E.
View Article and Find Full Text PDFA universal model of inhibition of neuraminidases from various influenza virus strains by a particular has been developed. It is based on known 3D data for neuraminidases from three influenza virus strains (A/Tokyo/3/67, A/tern/Australia/G70C/75, B/Lee/40) and modeling of 3D structure of neuraminidases from other strains (A/PR/8/34 è A/Aichi/2/68). Using docking and molecular dynamics, we have modeled 235 enzyme-ligand complexes for 89 compounds with known IC50 values.
View Article and Find Full Text PDFProteoCat is a computer program has been designed to help researchers in the planning of large-scale proteomic experiments. The central part of this program is the subprogram of hydrolysis simulation that supports 4 proteases (trypsin, lysine C, endoproteinases AspN and GluC). For the peptides obtained after virtual hydrolysis or loaded from data file a number of properties important in mass-spectrometric experiments can be calculated or predicted.
View Article and Find Full Text PDF