Publications by authors named "Mikovits J"

Aims: One aim of this study was to discover and understand the perceptions of healthcare delivery for transgender people who have had interactions with nurses while receiving care. An additional purpose of this study was to identify if these perceptions of nursing knowledge have an influence on transgender individuals seeking future healthcare.

Design: Qualitative, interpretive description.

View Article and Find Full Text PDF

Aims: The aim of this analysis was to investigate the concept of preparedness from literature within multiple disciplines to gain varied perspectives and establish a working definition.

Background: Preparedness is a barrier to LGBTQ considerations in nursing management and education of nursing staff. Understanding the concept of preparedness will help determine the next steps for making changes to give attention to LGBTQ needs.

View Article and Find Full Text PDF

The disabling disorder known as chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) has been linked in two independent studies to infection with xenotropic murine leukemia virus-related virus (XMRV) and polytropic murine leukemia virus (pMLV). Although the associations were not confirmed in subsequent studies by other investigators, patients continue to question the consensus of the scientific community in rejecting the validity of the association. Here we report blinded analysis of peripheral blood from a rigorously characterized, geographically diverse population of 147 patients with CFS/ME and 146 healthy subjects by the investigators describing the original association.

View Article and Find Full Text PDF

Murine leukemia viruses (MLVs), including xenotropic-MLV-related virus (XMRV), have been controversially linked to chronic fatigue syndrome (CFS). To explore this issue in greater depth, we compiled coded replicate samples of blood from 15 subjects previously reported to be XMRV/MLV-positive (14 with CFS) and from 15 healthy donors previously determined to be negative for the viruses. These samples were distributed in a blinded fashion to nine laboratories, which performed assays designed to detect XMRV/MLV nucleic acid, virus replication, and antibody.

View Article and Find Full Text PDF

The label 'chronic fatigue syndrome' (CFS) has persisted for many years because of the lack of knowledge of the aetiological agents and the disease process. In view of more recent research and clinical experience that strongly point to widespread inflammation and multisystemic neuropathology, it is more appropriate and correct to use the term 'myalgic encephalomyelitis' (ME) because it indicates an underlying pathophysiology. It is also consistent with the neurological classification of ME in the World Health Organization's International Classification of Diseases (ICD G93.

View Article and Find Full Text PDF

Background: The recent identification of xenotropic murine leukemia virus-related virus (XMRV) in the blood of patients with chronic fatigue syndrome (CFS) establishes that a retrovirus may play a role in the pathology in this disease. Knowledge of the immune response might lead to a better understanding of the role XMRV plays in this syndrome. Our objective was to investigate the cytokine and chemokine response in XMRV-associated CFS.

View Article and Find Full Text PDF

In October 2009, we reported the first direct isolation of infectious xenotropic murine leukemia virus-related virus (XMRV). In that study, we used a combination of biological amplification and molecular enhancement techniques to detect XMRV in more than 75% of 101 patients with chronic fatigue syndrome (CFS). Since our report, controversy arose after the publication of several studies that failed to detect XMRV infection in their CFS patient populations.

View Article and Find Full Text PDF

In 2006, sequences described as xenotropic murine leukemia virus-related virus (XMRV) were discovered in prostate cancer patients. In October 2009, we published the first direct isolation of infectious XMRV from humans and the detection of infectious XMRV in patients with chronic fatigue syndrome. In that study, a combination of classic retroviral methods were used including: DNA polymerase chain reaction and reverse transcriptase polymerase chain reaction for gag and env, full length genomic sequencing, immunoblotting for viral protein expression in activated peripheral blood mononuclear cells, passage of infectious virus in both plasma and peripheral blood mononuclear cells to indicator cell lines, and detection of antibodies to XMRV in plasma.

View Article and Find Full Text PDF

Chronic fatigue syndrome (CFS) is a debilitating disease of unknown etiology that is estimated to affect 17 million people worldwide. Studying peripheral blood mononuclear cells (PBMCs) from CFS patients, we identified DNA from a human gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), in 68 of 101 patients (67%) as compared to 8 of 218 (3.7%) healthy controls.

View Article and Find Full Text PDF

Kaposi's sarcoma (KS) and its causative agent, Kaposi's sarcoma associated herpesvirus (KSHV/HHV-8), a gamma2 herpesvirus, have distinctive geographical distributions that are largely unexplained. We propose the "oncoweed" hypothesis to explain these differences, namely that environmental cofactors present in KS endemic regions cause frequent reactivation of KSHV in infected subjects, leading to increased viral shedding and transmission leading to increased prevalence of KSHV infection as well as high viral load levels and antibody titers. Reactivation also plays a role in the pathogenesis of KSHV-associated malignancies.

View Article and Find Full Text PDF

Aberrant DNA methylation is now recognized as an important epigenetic alteration occurring early in human cancer. To directly study the role of DNA methyltransferase 1 (DNMT1) in the regulation of expression of tumor-related genes in human colon cancer cells, we stably transfected expression constructs containing sense or antisense DNMT1 into the human colon cancer cell line, SW1116. The expression level of mismatch repair genes (MMR), human mut-L homologue 1 (hMLH1) and human Mut S homologue 2 (hMSH2), was monitored by real-time RT-PCR.

View Article and Find Full Text PDF

HIV-1 infection leads to a disease that attacks the central regulatory mechanisms of the immune response. As mucosal tissue is one of the primary sites infected with HIV in vivo, we examined the effects of HIV exposure on human mast cells, important components of mucosal defense. Using the human mast cell line, HMC-1, which expresses CXCR4 but not CCR5 on the cell surface, we found that several HIV-1 X4 tropic lab (IIIB, RF) and primary isolates but not R5 (BAL, ADA) isolates productively infected these cells.

View Article and Find Full Text PDF

Objective: HIV-1 uses CD4 and chemokine receptors to enter cells. However, other target membrane components may also be involved. This study examines the role of glycosphingolipids (GSL) in HIV-1 entry into primary lymphocytes and its modulation by an inhibitor of GSL biosynthesis.

View Article and Find Full Text PDF

The DNA polymerase (POL) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for viral DNA replication and, thus, may be considered as a viable target for anti-KSHV therapeutics. To produce large quantities of homogeneous and pure POL required for high-throughput screening (HTS) for inhibitors, we generated a recombinant baculovirus vector encoding a hexahistidine (His6)-tagged POL and infected Spodoptera frugiperda Sf-9 insect cells. High expression of recombinant POL (rPOL) was achieved for up to 72h post-infection.

View Article and Find Full Text PDF

Methylation of cytosines controls a number of biologic processes such as imprinting and X chromosomal inactivation. DNA hypermethylation is closely associated with transcriptional silencing, while DNA hypomethylation is associated with transcriptional activation. Hypoacetylation of histones leads to compact chromatin with reduced accessibility to the transcriptional machinery.

View Article and Find Full Text PDF

The major DNA cytosine methyltransferase isoform in mouse erythroleukemia cells, Dnmt1, exhibits potent dead-end inhibition with a single-stranded nucleic acid by binding to an allosteric site on the enzyme. The previously reported substrate inhibition with double-stranded substrates also involves binding to an allosteric site. Thus, both forms of inhibition involve ternary enzyme-DNA-DNA complexes.

View Article and Find Full Text PDF

The crucial functions of HIV-1 nucleocapsid-p7 protein (NC-p7) at different stages of HIV replication are dependent on its nucleic acid binding properties. In this study, a search has been made to identify antagonists of the interaction between NC-p7 and d(TG)(4). A chemical library of approximately 2000 small molecules (the NCI Diversity Set) was screened, of the 26 active inhibitors that were identified, five contained a xanthenyl ring structure.

View Article and Find Full Text PDF

Although highly active antiretroviral therapy against human immunodeficiency virus (HIV) type 1 reduces the mortality of persons with acquired immunodeficiency syndrome, it does not eliminate HIV reservoirs. In this study, which used a 6-thioguanine (6-TG) resistant clone (4C6) of the MT-2 cell line as a model, the combination of 6-TG with both reverse-transcriptase (RT) inhibitor and protease inhibitor or 6-TG with a protease inhibitor alone completely eradicated HIV-1-carrying cells from the culture and protected uninfected 4C6 cells from HIV-1 infection. The combination of 6-TG and a RT inhibitor, azidothymidine, provided partial protection.

View Article and Find Full Text PDF

Hyper-mutable retroviruses such as HIV can become rapidly resistant to drugs used to treat infection. Strategies for coping with drug-resistant strains of virus include combination therapies, using viral protease and reverse transcriptase inhibitors. Another approach is the development of antiviral agents that attack mutationally nonpermissive targets that have functions essential for viral replication.

View Article and Find Full Text PDF

Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kaposi's Sarcoma-associated Virus (KSHV) also known as Human Herpesvirus 8 (HHV8) and Human T cell leukemia virus-1 (HTLV-1). We performed cell-free in vitro infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis.

View Article and Find Full Text PDF

Background: Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated.

Results: Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone.

View Article and Find Full Text PDF

DNA methylation, by regulating the transcription of genes, is a major modifier of the eukaryotic genome. DNA methyltransferases (DNMTs) are responsible for both maintenance and de novo methylation. We have reported that human immunodeficiency virus type 1 (HIV-1) infection increases DNMT1 expression and de novo methylation of genes such as the gamma interferon gene in CD4(+) cells.

View Article and Find Full Text PDF