Background: Nowadays, the chance of discovering the best antibody candidates for predicting clinical malaria has notably increased due to the availability of multi-sera data. The analysis of these data is typically divided into a feature selection phase followed by a predictive one where several models are constructed for predicting the outcome of interest. A key question in the analysis is to determine which antibodies should be included in the predictive stage and whether they should be included in the original or a transformed scale (i.
View Article and Find Full Text PDFSummary: Due to their flexibility and superior performance, machine learning models frequently complement and outperform traditional statistical survival models. However, their widespread adoption is hindered by a lack of user-friendly tools to explain their internal operations and prediction rationales. To tackle this issue, we introduce the survex R package, which provides a cohesive framework for explaining any survival model by applying explainable artificial intelligence techniques.
View Article and Find Full Text PDFBackground: Accurate risk stratification of uveal melanoma (UM) patients is important for determining the interval and frequency of surveillance. Loss of BAP1 expression has been shown to be strongly associated with UM-related death and metastasis.
Methods: In this study of 164 enucleated UMs, we assessed the prognostic role of preferentially expressed antigen in melanoma (PRAME) expression and Ki67 proliferation index measured by digital quantitation using QuPath programme in patients with BAP1-positive and BAP1-loss UMs.