Silver nanoparticles (AgNPs) are the one of the most extensively used nanomaterials. The strong antimicrobial properties of AgNPs have led to their use in a wide range of medical and consumer products. Although the neurotoxicity of AgNPs has been confirmed, the molecular mechanisms have not been extensively studied, particularly in immature organisms.
View Article and Find Full Text PDFDue to strong antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of medical and consumer products, including those dedicated for infants and children. While AgNPs are known to exert neurotoxic effects, current knowledge concerning their impact on the developing brain is scarce. During investigations of mechanisms of neurotoxicity in immature rats, we studied the influence of AgNPs on glutamate transporter systems which are involved in regulation of extracellular concentration of glutamate, an excitotoxic amino acid, and compared it with positive control-Ag citrate.
View Article and Find Full Text PDFThe widespread use of silver nanoparticles (AgNPs) in medicine and in multiple commercial products has motivated researchers to investigate their potentially hazardous effects in organisms. Since AgNPs may easily enter the brain through the blood-brain barrier (BBB), characterization of their interactions with cellular components of the neurovascular unit (NVU) is of particular importance. Therefore, in an animal model of prolonged low-dose exposure, we investigate the extent and mechanisms of influence of AgNPs on cerebral microvessels.
View Article and Find Full Text PDF