Single-crystal magnetic nanostructures with well-defined shapes attract lots of interest due to their potential applications in magnetic and spintronic devices. However, development of methods allowing controlling their mutual crystallographic and geometric orientation constitutes a significant scientific challenge. One of the routes for obtaining such structures is to grow the materials epitaxially on naturally-structured supports, such as vicinal surfaces of single-crystal substrates.
View Article and Find Full Text PDFThe COVID-19 pandemic has stimulated the scientific world to intensify virus-related studies aimed at the development of quick and safe ways of detecting viruses in the human body, studying the virus-antibody and virus-cell interactions, and designing nanocarriers for targeted antiviral therapies. However, research on dangerous viruses can only be performed in certified laboratories that follow strict safety procedures. Thus, developing deactivated virus constructs or safe-to-use virus-like objects, which imitate real viruses and allow performing virus-related studies in any research laboratory, constitutes an important scientific challenge.
View Article and Find Full Text PDFWe studied the structural, chemical, and magnetic properties of Ti/Au/Co/Ni layered systems subjected to plasma oxidation. The process results in the formation of NiO at the expense of metallic Ni, as clearly evidenced by X-ray photoelectron spectroscopy, while not affecting the surface roughness and grain size of the Co/Ni bilayers. Since the decrease of the thickness of the Ni layer and the formation of NiO increase the perpendicular magnetic anisotropy, oxidation may be locally applied for magnetic patterning.
View Article and Find Full Text PDFThe current state-of-the-art in the growth, structure, and physicochemical properties of iron nitride thin films is presented. First, different iron nitride phases are introduced based on their crystallographic structure and the Fe-N phase diagram. Second, preparation methods for thin iron nitride films are described.
View Article and Find Full Text PDFThe structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively.
View Article and Find Full Text PDFLow-temperature scanning tunnelling microscopy (STM) is employed to study electron-stimulated desorption of vanadyl groups from an ultrathin vanadium oxide film. The vanadia patches are prepared by reactive vapour deposition of V onto a Ru(0001) surface and comprise a highly ordered network of six and twelve membered V-O rings, some of them terminated by upright V[double bond, length as m-dash]O groups. The vanadyl units can be desorbed via electron injection from the STM tip in a reliable fashion.
View Article and Find Full Text PDFUltrathin transition metal oxide films exhibit unique physical and chemical properties not observed for the corresponding bulk oxides. These properties, originating mainly from the limited thickness and the interaction with the support, make those films similar to other supported 2D materials with bulk counterparts, such as transition metal dichalcogenides. Ultrathin iron oxide (FeO) films, for example, were shown to exhibit unique electronic, catalytic and magnetic properties that depend on the type of the used support.
View Article and Find Full Text PDFIron oxide films epitaxially grown on close-packed metal single crystal substrates exhibit nearly-perfect structural order, high catalytic activity (FeO) and room-temperature magnetism (Fe₃O₄). However, the morphology of the films, especially in the ultrathin regime, can be significantly influenced by the crystalline structure of the used support. This work reports an ultra-high vacuum (UHV) low energy electron/synchrotron light-based X-ray photoemission electron microscopy (LEEM/XPEEM) and electron diffraction (µLEED) study of the growth of FeO and Fe₃O₄ on two closed-packed metal single crystal surfaces: Pt(111) and Ru(0001).
View Article and Find Full Text PDFReduced graphene oxide-magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators.
View Article and Find Full Text PDFMagnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content.
View Article and Find Full Text PDFPediatr Endocrinol Diabetes Metab
September 2017
Background/aims: The aim of this study was to associate children's growth disorders with polymorphisms detected in the P1 promoter region of IGF1 (including SNP and (CA) n microsatellite repeat polymorphism) and IGF1 and IGFPB3 levels.
Methods: IGF-1 gene P1 promoter polymorphism was analyzed in DNA obtained from the blood of 51 children with growth disorders and 50 healthy children without growth disorders by means of PCR-SSCP and sequencing.
Results: Among children with growth disorders and the control group we found previously described polymorphisms in the P1 promoter of the IGF-1 gene (rs35767, rs5742612) and different genotypes.
Mater Sci Eng C Mater Biol Appl
October 2015
The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques.
View Article and Find Full Text PDFComposites of unmodified or oxidized carbon nano-onions (CNOs/ox-CNOs) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X-ray photoelectron spectroscopy characterization is performed for pristine and ox-CNO samples.
View Article and Find Full Text PDF