Angew Chem Int Ed Engl
October 2024
Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process.
View Article and Find Full Text PDFIn this report, we show that a very common modification (especially in tRNA), dihydrouridine, was efficiently produced by photoreduction of the canonical pyrimidine ribonucleoside, uridine in formamide. Formamide not only acts as a solvent in this reaction, but also as the reductant. The other three components of the canonical alphabet (C, A, G) remained intact under the same conditions, suggesting that dihydrouridine might have coexisted with all four canonical RNA nucleosides (C, U, A, G) at the dawn of life.
View Article and Find Full Text PDFUV-induced photolysis of aqueous guanine nucleosides produces 8-oxo-guanine and Fapy-guanine, which can induce various types of cellular malfunction. The mechanistic rationale underlying photodestructive processes of guanine nucleosides is still largely obscure. Here, we employ accurate quantum chemical calculations and demonstrate that an excited-state non-bonding interaction of guanosine and a water molecule facilitates the electron-driven proton transfer process from water to the chromophore fragment.
View Article and Find Full Text PDFThe design of artificially engineered chiral structures has received much attention, but the implementation of dynamic functions to modulate the chiroptical response of the systems is less explored. Here, we present a light-responsive G-quadruplex (G4)-based assembly in which chirality enrichment is induced, tuned, and fueled by molecular switches. In particular, the mirror-image dependence on photoactivated azo molecules, undergoing -to- isomerization, shows chiral recognition effects on the inherent flexibility and conformational diversity of DNA G4s having distinct handedness (right- and left-handed).
View Article and Find Full Text PDFSubstitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose.
View Article and Find Full Text PDFThe nature of the first genetic polymer is the subject of major debate. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario.
View Article and Find Full Text PDFPentose aminooxazolines and oxazolidinone thiones are considered as the key precursors which could have enabled the formation of RNA nucleotides under the conditions of early Earth. UV-irradiation experiments and quantum-chemical calculations demonstrate that these compounds are remarkably photostable and could accumulate over long periods of time in UV-rich prebiotic environments to undergo stereoisomeric purification.
View Article and Find Full Text PDF2-Aminoimidazole (2-AIM) was proposed as a plausible nucleotide activating group in a nonenzymatic copying and polymerization of short RNA sequences under prebiotically plausible conditions. One of the key selection factors controlling the lifespan and importance of organic molecules on early Earth was ultraviolet radiation from the young Sun. Therefore, to assess the suitability of 2-AIM for prebiotic chemistry, we performed non-adiabatic molecular dynamics simulations and static explorations of potential energy surfaces of the photoexcited 2-AIM-(H2O)5 model system by means of the algebraic diagrammatic construction method to the second order [ADC(2)].
View Article and Find Full Text PDFPolymeric carbon-nitride materials consisting of triazine or heptazine units have recently attracted vast interest as photocatalysts for water splitting with visible light. Adopting the hydrogen-bonded triazine-water complex as a model system, we explored the photochemical reaction mechanisms involved in the water splitting reaction in this system, using wavefunction-based ab initio electronic-structure methods. It is shown that photoexcited triazine can abstract a hydrogen atom from the water molecule by the sequential transfer of an electron and a proton from water to triazine, resulting in the triazinyl-hydroxyl biradical in the electronic ground state.
View Article and Find Full Text PDFPhotochemically created πσ* states were classified among the most prominent factors determining the ultrafast radiationless deactivation and photostability of many biomolecular building blocks. In the past two decades, the gas phase photochemistry of πσ* excitations was extensively investigated and was attributed to N-H and O-H bond fission processes. However, complete understanding of the complex photorelaxation pathways of πσ* states in the aqueous environment was very challenging, owing to the direct participation of solvent molecules in the excited-state deactivation.
View Article and Find Full Text PDF