Phase-shifting electron holography (PS-EH) using a transmission electron microscope (TEM) was applied to visualize layers with different concentrations of carriers activated by Si (at dopant levels of 1019, 1018, 1017 and 1016 atoms cm-3) in n-type GaN semiconductors. To precisely measure the reconstructed phase profiles in the GaN sample, three electron biprisms were used to obtain a series of high-contrast holograms without Fresnel fringes generated by a biprism filament, and a cryo-focused-ion-beam (cryo-FIB) was used to prepare a uniform TEM sample with less distortion in the wide field of view. All layers in a 350-nm-thick TEM sample were distinguished with 1.
View Article and Find Full Text PDFThe innate electric potentials in biased p- and n-type GaAs compound semiconductors and the built-in potential were successfully measured with high accuracy and precision by applying in situ phase-shifting electron holography to a wedge-shaped GaAs specimen. A cryo-focused-ion-beam system was used to prepare the 35°-wedge-shaped specimen with smooth surfaces for a precise measurement. The specimen was biased in a transmission electron microscope, and holograms with high-contrast interference fringes were recorded for the phase-shifting method.
View Article and Find Full Text PDF