Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal.
View Article and Find Full Text PDFMicrosystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle.
View Article and Find Full Text PDFSeveral submicron probe technologies require the use of apertures to serve as electrical, optical or fluidic probes; for example, writing precisely using an atomic force microscope or near-field sensing of light reflecting from a biological surface. Controlling the size of such apertures below 100 nm is a challenge in fabrication. One way to accomplish this scale is to use high resolution tools such as deep UV or e-beam.
View Article and Find Full Text PDFWater electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species.
View Article and Find Full Text PDFA reproducible wafer-scale method to obtain 3D nanostructures is investigated. This method, called corner lithography, explores the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as structural material or as an inversion mask in subsequent steps.
View Article and Find Full Text PDFThe development of hydrothermal synthesis has greatly promoted bottom-up nanoscience for the rational growth of diverse zinc oxide (ZnO) nanostructures. In comparison with normal ZnO nanowires, ZnO nanostructures with a larger surface area, for instance, branched nanowires, are more attractive in the application fields of catalysis, sensing, dye-sensitized solar cells etc. So far the ZnO branched nanowires achieved by either one-step or multistep growth always present a boundary-governed nonepitaxial branch/stem interface.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2011
Ignition of exothermic chemical reactions in small volumes is considered as difficult or impossible due to the large surface-to-volume ratio. Here observation of the spontaneous reaction is reported between hydrogen and oxygen in bubbles whose diameter is smaller than a threshold value around 150 nm. The effect is attributed to high Laplace pressure and to fast dynamics in nanobubbles and is the first indication on combustion in the nanoscale.
View Article and Find Full Text PDFWe present a multi-Si nanoridge fabrication scheme and its application in nanoimprint lithography (NIL). Triple Si nanoridges approximately 120 nm high and 40 nm wide separated by 40 nm spacing are fabricated and successfully applied as a stamp in nanoimprint lithography. The fabrication scheme, using a full-wet etching procedure in combination with repeated edge lithography, consists of hot H(3)PO(4) acid SiN(x) retraction etching, 20% KOH Si etching, 50% HF SiN(x) retraction etching and LOCal Oxidation of Silicon (LOCOS).
View Article and Find Full Text PDFA novel packaging cum interfacing technique for microfluidic devices is reported. Unlike the conventional approach towards packaging in which the microsystem is first developed and finally packaged, a reverse approach is shown here that integrates the package with the microsystem either at the beginning or within the fabrication process. This new method employs standard glass tubes as substrates on which microfluidic components are fabricated.
View Article and Find Full Text PDF