Publications by authors named "Miklos Z Kiss"

Attenuation estimation and imaging in the cervix has been utilized to evaluate the onset of cervical ripening during pregnancy. This feature has also been utilized for the acoustic characterization of leiomyomas and myometrial tissue. In this paper, we present direct narrowband substitution measurement values of the variation in the ultrasonic attenuation coefficient in ex vivo human uterine and cervical tissue, in the 5-10 MHz frequency range.

View Article and Find Full Text PDF

The viscoelastic characteristics of thermal lesions in ex vivo animal liver are investigated in this paper. Characterization of the moduli of thermal lesions prepared at several temperatures will provide additional information for the elastographic monitoring of radio frequency ablation of hepatic tumors. In this study, the frequency-dependent complex modulus of thermal lesions prepared at temperatures ranging from 60 to 90 degrees C over a frequency range from 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create ultrasound strain imaging techniques to help doctors better diagnose and treat various uterine abnormalities, like leiomyomas, endometrial polyps, and adenomyosis, which can cause irregular bleeding.
  • Researchers conducted strain imaging on 29 uteri removed during hysterectomies, finding that leiomyomas appeared stiffer compared to normal myometrium, while endometrial polyps were softer, allowing for effective differentiation between these conditions.
  • Results showed that ultrasound strain imaging can effectively distinguish between endometrial polyps and leiomyomas, though further research is needed to explore its capabilities for identifying other uterine abnormalities.
View Article and Find Full Text PDF

The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years.

View Article and Find Full Text PDF

The variations in the stiffness or stiffness contrast of lesions resulting from radiofrequency (RF) ablation of canine liver tissue at different temperatures and for different ablation durations at a specified temperature are analyzed. Tissue stiffness, in general, increases with temperature; however, an anomaly exists around 80 degrees C, where the stiffness of the lesion is lower than that of the lesion ablated at 70 degrees C. On the other hand, the stiffness increases monotonically with the duration of ablation.

View Article and Find Full Text PDF

Mechanical properties of biological tissues are of interest for assessing the performance of elastographic methods that evaluate the stiffness characteristics of tissue. The mechanical properties of interest include the frequency-dependent complex moduli, storage and loss moduli of tissues. Determination of the mechanical properties of biological tissues is often limited by proper geometry of the sample, as well as homogeneity of the stress-strain relationship.

View Article and Find Full Text PDF

The contrast of calcifications in images of breast tissue specimens using a synchrotron-based diffraction enhanced imaging (DEI) apparatus has been measured and is compared to the contrast in images acquired using a conventional synchrotron-based radiographic imaging modality. DEI is an imaging modality which derives image contrast from x-ray absorption, refraction and small-angle scatter-rejection (extinction), unlike conventional radiographic techniques, which can only derive contrast from absorption. DEI is accomplished by inserting an analyser crystal in the beam path between the sample and the detector.

View Article and Find Full Text PDF

Refraction contrast of simple objects obtained using diffraction enhanced imaging (DEI) was studied and compared to conventional radiographic contrast. Lucite cylinders and nylon wires were imaged using monochromatic synchrotron radiation at the National Synchrotron Light Source (http://nslsweb. nsls.

View Article and Find Full Text PDF